Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
Cell Microbiol. 2012 May;14(5):682-97. doi: 10.1111/j.1462-5822.2012.01751.x. Epub 2012 Feb 15.
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
适应性丝状病原体,如卵菌 Hyaloperonospora arabidopsidis(Hpa)和 Phytophthora infestans(Pi),在活宿主细胞内伸出专门的菌丝体,即吸器,以抑制宿主防御并获取营养。吸器的容纳需要宿主细胞的重组和新的宿主细胞膜的生物发生,即外生膜(EHM),它包围吸器,将宿主细胞与病原体隔开。在这里,我们应用荧光标记蛋白的活细胞成像标记各种膜区室,并研究了与容纳拟南芥和 N. benthamiana 中的卵菌吸器相关的亚细胞变化。质膜驻留蛋白在 EHM 上呈现出不同的定位。同样,分泌小泡和内体区室也包围着 Hpa 和 Pi 吸器,揭示了这两种卵菌之间的差异,并暗示了囊泡运输途径在病原体控制的 EHM 生物发生中的作用。这一观点得到了内体介导的运输调节剂突变体易感性增强的支持。这些观察结果指出了宿主亚细胞防御和 EHM 的特异性,以应对病原体。在 Hpa 相互作用中经常观察到防御相关的吸器包被,这是一种围绕成熟吸器生长的双层膜。有趣的是,所有测试的植物蛋白都在 Hpa 吸器包被中积累,这表明一般默认囊泡运输途径的招募是为了抵御病原体的入侵。总的来说,我们的研究结果表明,与卵菌生物量相关的亚细胞变化具有共同的要求,并突出了两种卵菌病原体在重新编程宿主细胞囊泡运输以容纳吸器方面的差异。这为进一步剖析病原体触发的宿主亚细胞变化的重编程提供了一个框架。