Suppr超能文献

植物亚细胞对成功卵菌感染的反应模式揭示了宿主细胞重编程和内吞运输的差异。

Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking.

机构信息

Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.

出版信息

Cell Microbiol. 2012 May;14(5):682-97. doi: 10.1111/j.1462-5822.2012.01751.x. Epub 2012 Feb 15.

Abstract

Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.

摘要

适应性丝状病原体,如卵菌 Hyaloperonospora arabidopsidis(Hpa)和 Phytophthora infestans(Pi),在活宿主细胞内伸出专门的菌丝体,即吸器,以抑制宿主防御并获取营养。吸器的容纳需要宿主细胞的重组和新的宿主细胞膜的生物发生,即外生膜(EHM),它包围吸器,将宿主细胞与病原体隔开。在这里,我们应用荧光标记蛋白的活细胞成像标记各种膜区室,并研究了与容纳拟南芥和 N. benthamiana 中的卵菌吸器相关的亚细胞变化。质膜驻留蛋白在 EHM 上呈现出不同的定位。同样,分泌小泡和内体区室也包围着 Hpa 和 Pi 吸器,揭示了这两种卵菌之间的差异,并暗示了囊泡运输途径在病原体控制的 EHM 生物发生中的作用。这一观点得到了内体介导的运输调节剂突变体易感性增强的支持。这些观察结果指出了宿主亚细胞防御和 EHM 的特异性,以应对病原体。在 Hpa 相互作用中经常观察到防御相关的吸器包被,这是一种围绕成熟吸器生长的双层膜。有趣的是,所有测试的植物蛋白都在 Hpa 吸器包被中积累,这表明一般默认囊泡运输途径的招募是为了抵御病原体的入侵。总的来说,我们的研究结果表明,与卵菌生物量相关的亚细胞变化具有共同的要求,并突出了两种卵菌病原体在重新编程宿主细胞囊泡运输以容纳吸器方面的差异。这为进一步剖析病原体触发的宿主亚细胞变化的重编程提供了一个框架。

相似文献

3
The plasmodesmal protein PDLP1 localises to haustoria-associated membranes during downy mildew infection and regulates callose deposition.
PLoS Pathog. 2014 Nov 13;10(10):e1004496. doi: 10.1371/journal.ppat.1004496. eCollection 2014 Oct.
5
Characterization of the membrane-associated HaRxL17 Hpa effector candidate.
Plant Signal Behav. 2012 Jan;7(1):145-9. doi: 10.4161/psb.7.1.18450.
8
Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.
PLoS Pathog. 2011 Nov;7(11):e1002348. doi: 10.1371/journal.ppat.1002348. Epub 2011 Nov 3.
10
Border Control: Manipulation of the Host-Pathogen Interface by Perihaustorial Oomycete Effectors.
Mol Plant Microbe Interact. 2024 Mar;37(3):220-226. doi: 10.1094/MPMI-09-23-0122-FI. Epub 2024 Mar 8.

引用本文的文献

2
Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis.
Plant Cell. 2023 Jun 26;35(7):2504-2526. doi: 10.1093/plcell/koad069.
4
Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking.
Membranes (Basel). 2022 Aug 1;12(8):760. doi: 10.3390/membranes12080760.
5
Dynamic localization of a helper NLR at the plant-pathogen interface underpins pathogen recognition.
Proc Natl Acad Sci U S A. 2021 Aug 24;118(34). doi: 10.1073/pnas.2104997118.
6
Connecting the dots: from nanodomains to physiological functions of REMORINs.
Plant Physiol. 2021 Apr 2;185(3):632-649. doi: 10.1093/plphys/kiaa063.
8
Oomycetes Used in Arabidopsis Research.
Arabidopsis Book. 2019 Aug 27;17:e0188. doi: 10.1199/tab.0188. eCollection 2019.
9
Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize.
Mol Plant Pathol. 2020 Dec;21(12):1662-1676. doi: 10.1111/mpp.12999. Epub 2020 Oct 10.

本文引用的文献

2
Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7. doi: 10.1073/pnas.1112708109. Epub 2011 Dec 5.
3
Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis.
Plant Cell. 2011 Sep;23(9):3463-81. doi: 10.1105/tpc.111.086918. Epub 2011 Sep 20.
7
How do oomycete effectors interfere with plant life?
Curr Opin Plant Biol. 2011 Aug;14(4):407-14. doi: 10.1016/j.pbi.2011.05.002. Epub 2011 Jun 9.
8
A novel protein family mediates Casparian strip formation in the endodermis.
Nature. 2011 May 19;473(7347):380-3. doi: 10.1038/nature10070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验