Suppr超能文献

药物发现高通量筛选中的假设检验

Hypothesis testing in high-throughput screening for drug discovery.

作者信息

Prummer Michael

机构信息

F. Hoffmann-La Roche AG, Pharma Research & Early Development, Small Molecule Research, Basel, Switzerland.

出版信息

J Biomol Screen. 2012 Apr;17(4):519-29. doi: 10.1177/1087057111431278. Epub 2012 Jan 10.

Abstract

Following the success of small-molecule high-throughput screening (HTS) in drug discovery, other large-scale screening techniques are currently revolutionizing the biological sciences. Powerful new statistical tools have been developed to analyze the vast amounts of data in DNA chip studies, but have not yet found their way into compound screening. In HTS, characterization of single-point hit lists is often done only in retrospect after the results of confirmation experiments are available. However, for prioritization, for optimal use of resources, for quality control, and for comparison of screens it would be extremely valuable to predict the rates of false positives and false negatives directly from the primary screening results. Making full use of the available information about compounds and controls contained in HTS results and replicated pilot runs, the Z score and from it the p value can be estimated for each measurement. Based on this consideration, we have applied the concept of p-value distribution analysis (PVDA), which was originally developed for gene expression studies, to HTS data. PVDA allowed prediction of all relevant error rates as well as the rate of true inactives, and excellent agreement with confirmation experiments was found.

摘要

继小分子高通量筛选(HTS)在药物发现领域取得成功之后,其他大规模筛选技术目前正在彻底改变生物科学。已经开发出强大的新统计工具来分析DNA芯片研究中的大量数据,但尚未应用于化合物筛选。在高通量筛选中,单点命中列表的表征通常仅在确认实验结果出来后才进行回顾性分析。然而,为了进行优先级排序、优化资源利用、进行质量控制以及比较筛选结果,直接从初步筛选结果预测假阳性和假阴性率将非常有价值。充分利用高通量筛选结果和重复预实验中包含的有关化合物和对照的可用信息,可以为每次测量估计Z分数及其p值。基于这一考虑,我们将最初为基因表达研究开发的p值分布分析(PVDA)概念应用于高通量筛选。PVDA能够预测所有相关错误率以及真正无活性的比率,并且与确认实验结果高度吻合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验