Wei Xin, Gao Lin, Zhang Xiaolei, Qian Hong, Rowan Karen, Mark David, Peng Zhengwei, Huang Kuo-Sen
1Research Informatics, F. Hoffmann-La Roche Inc., Nutley, NJ, USA.
J Biomol Screen. 2013 Oct;18(9):1121-31. doi: 10.1177/1087057113491495. Epub 2013 May 29.
High-throughput screening (HTS) has been widely used to identify active compounds (hits) that bind to biological targets. Because of cost concerns, the comprehensive screening of millions of compounds is typically conducted without replication. Real hits that fail to exhibit measurable activity in the primary screen due to random experimental errors will be lost as false-negatives. Conceivably, the projected false-negative rate is a parameter that reflects screening quality. Furthermore, it can be used to guide the selection of optimal numbers of compounds for hit confirmation. Therefore, a method that predicts false-negative rates from the primary screening data is extremely valuable. In this article, we describe the implementation of a pilot screen on a representative fraction (1%) of the screening library in order to obtain information about assay variability as well as a preliminary hit activity distribution profile. Using this training data set, we then developed an algorithm based on Bayesian logic and Monte Carlo simulation to estimate the number of true active compounds and potential missed hits from the full library screen. We have applied this strategy to five screening projects. The results demonstrate that this method produces useful predictions on the numbers of false negatives.
高通量筛选(HTS)已被广泛用于鉴定与生物靶点结合的活性化合物(命中化合物)。出于成本考虑,对数以百万计的化合物进行全面筛选时通常不进行重复实验。由于随机实验误差,在初次筛选中未能表现出可测量活性的真正命中化合物将作为假阴性被遗漏。可以想象,预计的假阴性率是反映筛选质量的一个参数。此外,它可用于指导选择用于命中化合物确认的最佳化合物数量。因此,一种从初次筛选数据预测假阴性率的方法极具价值。在本文中,我们描述了对筛选文库的代表性部分(1%)进行预筛选的实施过程,以便获取有关检测变异性以及初步命中活性分布概况的信息。利用这个训练数据集,我们随后开发了一种基于贝叶斯逻辑和蒙特卡罗模拟的算法,以估计来自完整文库筛选的真正活性化合物数量和潜在的漏筛命中化合物数量。我们已将此策略应用于五个筛选项目。结果表明,该方法对假阴性数量能做出有用的预测。