Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, Università degli Studi di Palermo, Viale delle Scienze-Edificio 16, 90128 Palermo, Italy.
Appl Microbiol Biotechnol. 2012 May;94(3):719-28. doi: 10.1007/s00253-011-3833-y. Epub 2012 Jan 11.
Most enzymes involved in tryptophan catabolism via kynurenine formation are highly conserved in Prokaryotes and Eukaryotes. In humans, alterations of this pathway have been related to different pathologies mainly involving the central nervous system. In Bacteria, tryptophan and some of its derivates are important antibiotic precursors. Tryptophan degradation via kynurenine formation involves two different pathways: the eukaryotic kynurenine pathway, also recently found in some bacteria, and the tryptophan-to-anthranilate pathway, which is widespread in microorganisms. The latter produces anthranilate using three enzymes also involved in the kynurenine pathway: tryptophan 2,3-dioxygenase (TDO), kynureninase (KYN), and kynurenine formamidase (KFA). In Streptomyces coelicolor, where it had not been demonstrated which genes code for these enzymes, tryptophan seems to be important for the calcium- dependent antibiotic (CDA) production. In this study, we describe three adjacent genes of S. coelicolor (SCO3644, SCO3645, and SCO3646), demonstrating their involvement in the tryptophan-to-anthranilate pathway: SCO3644 codes for a KFA, SCO3645 for a KYN and SCO3646 for a TDO. Therefore, these genes can be considered as homologous respectively to kynB, kynU, and kynA of other microorganisms and belong to a constitutive catabolic pathway in S. coelicolor, which expression increases during the stationary phase of a culture grown in the presence of tryptophan. Moreover, the S. coelicolor ΔkynU strain, in which SCO3645 gene is deleted, produces higher amounts of CDA compared to the wild-type strain. Overall, these results describe a pathway, which is used by S. coelicolor to catabolize tryptophan and that could be inactivated to increase antibiotic production.
大多数涉及色氨酸通过犬尿酸形成分解代谢的酶在原核生物和真核生物中高度保守。在人类中,该途径的改变与主要涉及中枢神经系统的不同病理有关。在细菌中,色氨酸及其一些衍生物是重要的抗生素前体。色氨酸通过犬尿酸形成的降解涉及两条不同的途径:真核犬尿酸途径,最近也在一些细菌中发现,以及广泛存在于微生物中的色氨酸到邻氨基苯甲酸途径。后者使用三种也参与犬尿酸途径的酶产生邻氨基苯甲酸:色氨酸 2,3-加双氧酶(TDO)、犬尿酸酶(KYN)和犬尿酸酰胺酶(KFA)。在天蓝色链霉菌中,尚未证明哪些基因编码这些酶,色氨酸似乎对钙依赖性抗生素(CDA)的产生很重要。在这项研究中,我们描述了天蓝色链霉菌(SCO3644、SCO3645 和 SCO3646)的三个相邻基因,证明它们参与色氨酸到邻氨基苯甲酸途径:SCO3644 编码 KFA,SCO3645 编码 KYN,SCO3646 编码 TDO。因此,这些基因可以分别被认为与其他微生物的 kynB、kynU 和 kynA 同源,并且属于天蓝色链霉菌中组成型分解代谢途径,该途径在含有色氨酸的培养物的静止期表达增加。此外,与野生型菌株相比,S. coelicolorΔkynU 菌株(其中 SCO3645 基因缺失)产生更高量的 CDA。总的来说,这些结果描述了天蓝色链霉菌用于分解代谢色氨酸的途径,并且该途径可以失活以增加抗生素的产生。