Department of Physiology & Pharmacology, Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, AB, Canada.
Neurogastroenterol Motil. 2012 Mar;24(3):e113-24. doi: 10.1111/j.1365-2982.2011.01860.x. Epub 2012 Jan 11.
The enteric nervous system (ENS) possesses extensive synaptic connections which integrate information and provide appropriate outputs to coordinate the activity of the gastrointestinal tract. The regulation of enteric synapses is not well understood. Cannabinoid (CB)(1) receptors inhibit the release of acetylcholine (ACh) in the ENS, but their role in the synapse is not understood. We tested the hypothesis that enteric CB(1) receptors provide inhibitory control of excitatory neurotransmission in the ENS.
Intracellular microelectrode recordings were obtained from mouse myenteric plexus neurons. Interganglionic fibers were stimulated with a concentric stimulating electrode to elicit synaptic events on to the recorded neuron. Differences between spontaneous and evoked fast synaptic transmission was examined within preparations from CB(1) deficient mice (CB(1)(-/-)) and wild-type (WT) littermate controls.
Cannabinoid receptors were colocalized on terminals expressing the vesicular ACh transporter and the synaptic protein synaptotagmin. A greater proportion of CB(1)(-/-) neurons received spontaneous fast excitatory postsynaptic potentials than neurons from WT preparations. The CB(1) agonist WIN55,212 depressed WT synapses without any effect on CB(1)(-/-) synapses. Synaptic activity in response to depolarization was markedly enhanced at CB(1)(-/-) synapses and after treatment with a CB(1) antagonist in WT preparations. Activity-dependent liberation of a retrograde purine messenger was demonstrated to facilitate synaptic transmission in CB(1)(-/-) mice.
CONCLUSIONS & INFERENCES: Cannabinoid receptors inhibit transmitter release at enteric synapses and depress synaptic strength basally and in an activity-dependent manner. These actions help explain accelerated intestinal transit observed in the absence of CB(1) receptors.
肠神经系统(ENS)拥有广泛的突触连接,这些连接整合信息并提供适当的输出,以协调胃肠道的活动。肠突触的调节机制尚不清楚。大麻素(CB)(1)受体抑制 ENS 中乙酰胆碱(ACh)的释放,但它们在突触中的作用尚不清楚。我们测试了这样一个假设,即肠内 CB(1)受体为 ENS 中的兴奋性神经传递提供抑制性控制。
从小鼠肌间神经丛神经元中获得细胞内微电极记录。用同心刺激电极刺激节间纤维,以在记录神经元上引发突触事件。在 CB(1)缺乏型(CB(1)(-/-))小鼠和野生型(WT)同窝对照的制剂中,检查自发性和诱发的快速突触传递之间的差异。
大麻素受体与表达囊泡 ACh 转运体和突触蛋白突触结合蛋白的末端共定位。与 WT 制剂的神经元相比,更多的 CB(1)(-/-)神经元接收到自发性快速兴奋性突触后电位。大麻素受体激动剂 WIN55,212 抑制 WT 突触,但对 CB(1)(-/-)突触没有影响。在 CB(1)(-/-)突触和 WT 制剂经 CB(1)拮抗剂处理后,对去极化的反应性突触活动明显增强。证明活性依赖性释放嘌呤逆行信使有助于 CB(1)(-/-)小鼠的突触传递。
大麻素受体抑制肠突触的递质释放,并在基础水平和活动依赖性方式下抑制突触强度。这些作用有助于解释缺乏 CB(1)受体时观察到的加速肠道转运。