Suppr超能文献

可扩展制造多功能独立式碳纳米管/聚合物复合薄膜用于能量转换。

Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion.

机构信息

Chemical & Environmental Engineering Department, Yale University, New Haven, Connecticut 06511, United States.

出版信息

ACS Nano. 2012 Feb 28;6(2):1347-56. doi: 10.1021/nn2041544. Epub 2012 Jan 24.

Abstract

Translating the unique properties of individual single-walled carbon nanotubes (SWNTs) to the macroscale while simultaneously incorporating additional functionalities into composites has been stymied by inadequate assembly methods. Here we describe a technique for developing multifunctional SWNT/polymer composite thin films that provides a fundamental engineering basis to bridge the gap between their nano- and macroscale properties. Selected polymers are infiltrated into a Mayer rod coated conductive SWNT network to fabricate solar cell transparent conductive electrodes (TCEs), fuel cell membrane electrode assemblies (MEAs), and lithium ion battery electrodes. Our TCEs have an outstanding optoelectronic figure of merit σ(dc)/σ(ac) of 19.4 and roughness of 3.8 nm yet are also mechanically robust enough to withstand delamination, a step toward scratch resistance necessary for flexible electronics. Our MEAs show platinum utilization as high as 1550 mW/mg(Pt), demonstrating our technique's ability to integrate ionic conductivity of the polymer with electrical conductivity of the SWNTs at the Pt surface. Our battery anodes, which show reversible capacity of ∼850 mAh/g after 15 cycles, demonstrate the integration of electrode and separator to simplify device architecture and decrease overall weight. Each of these applications demonstrates our technique's ability to maintain the conductivity of SWNT networks and their dispersion within a polymer matrix while concurrently optimizing key complementary properties of the composite. Here, we lay the foundation for the assembly of nanotubes and nanostructured components (rods, wires, particles, etc.) into macroscopic multifunctional materials using a low-cost and scalable solution-based processing technique.

摘要

将单个单壁碳纳米管 (SWNT) 的独特性质转化为宏观尺度,同时将附加功能纳入复合材料中,这一目标一直受到组装方法不完善的阻碍。在这里,我们描述了一种开发多功能 SWNT/聚合物复合薄膜的技术,该技术为弥合其纳米和宏观性质之间的差距提供了基本的工程基础。选择的聚合物被注入到涂覆有 Mayer 棒的导电 SWNT 网络中,以制造太阳能电池透明导电电极 (TCE)、燃料电池膜电极组件 (MEA) 和锂离子电池电极。我们的 TCE 具有出色的光电性能,其直流/交流比 σ(dc)/σ(ac) 为 19.4,粗糙度为 3.8nm,同时也具有足够的机械强度,可以承受分层,这是实现柔性电子产品所需的抗划伤性的一步。我们的 MEA 显示出高达 1550 mW/mg(Pt)的铂利用率,证明了我们的技术能够将聚合物的离子导电性与 SWNTs 在 Pt 表面的导电性集成在一起。我们的电池阳极在 15 次循环后表现出约 850 mAh/g 的可逆容量,证明了我们的技术能够将电极和隔板集成在一起,简化器件结构并降低整体重量。这些应用中的每一种都展示了我们的技术能够在保持 SWNT 网络的导电性及其在聚合物基质中的分散性的同时,同时优化复合材料的关键互补性质的能力。在这里,我们为使用低成本、可扩展的基于溶液的处理技术将纳米管和纳米结构组件(棒、线、颗粒等)组装成宏观多功能材料奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验