Suppr超能文献

使用聚合物去除法分离用于柔性和可拉伸电子学的半导体碳纳米管。

Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method.

机构信息

Department of Chemical Engineering, Stanford University , Stanford, California 94305, United States.

出版信息

Acc Chem Res. 2017 Apr 18;50(4):1096-1104. doi: 10.1021/acs.accounts.7b00062. Epub 2017 Mar 30.

Abstract

Electronics that are soft, conformal, and stretchable are highly desirable for wearable electronics, prosthetics, and robotics. Among the various available electronic materials, single walled carbon nanotubes (SWNTs) and their network have exhibited high mechanical flexibility and stretchability, along with comparable electrical performance to traditional rigid materials, e.g. polysilicon and metal oxides. Unfortunately, SWNTs produced en masse contain a mixture of semiconducting (s-) and metallic (m-) SWNTs, rendering them unsuitable for electronic applications. Moreover, the poor solubility of SWNTs requires the introduction of insulating surfactants to properly disperse them into individual tubes for device fabrication. Compared to other SWNT dispersion and separation methods, e.g., DNA wrapping, density gradient ultracentrifugation, and gel chromatography, polymer wrapping can selectively disperse s-SWNTs with high selectivity (>99.7%), high concentration (>0.1 mg/mL), and high yield (>20%). In addition, this method only requires simple sonication and centrifuge equipment with short processing time down to 1 h. Despite these advantages, the polymer wrapping method still faces two major issues: (i) The purified s-SWNTs usually retain a substantial amount of polymers on their surface even after thorough rinsing. The low conductivity of the residual polymers impedes the charge transport in SWNT networks. (ii) Conjugated polymers used for SWNT wrapping are expensive. Their prices ($100-1000/g) are comparable or even higher than those of SWNTs ($10-300/g). These utilized conjugated polymers represent a large portion of the overall separation cost. In this Account, we summarize recent progresses in polymer design for selective dispersion and separation of SWNTs. We focus particularly on removable and/or recyclable polymers that enable low-cost and scalable separation methods. First, different separation methods are compared to show the advantages of the polymer wrapping methods. In specific, we compare different characterization methods used for purity evaluation. For s-SWNTs with high purity, i.e., >99%, short-channel (smaller than SWNT length) electrical measurement is more reliable than optical methods. Second, possible sorting mechanism and molecular design strategies are discussed. Polymer parameters such as backbone design and side chain engineering affect the polymer-SWNT interactions, leading to different dispersion concentration and selectivity. To address the above-mentioned limiting factors in both polymer contamination and cost issues, we describe two important polymer removal and cycling approaches: (i) changing polymer wrapping conformation to release SWNTs; (ii) depolymerization of conjugated polymer into small molecular units that have less affinity toward SWNTs. These methods allow the removal and recycling of the wrapping polymers, thus providing low-cost and clean s-SWNTs. Third, we discuss various applications of polymer-sorted s-SWNTs, including flexible/stretchable thin-film transistors, thermoelectric devices, and solar cells. In these applications, polymer-sorted s-SWNTs and their networks have exhibited good processability, attractive mechanical properties, and high electrical performance. An increasing number of studies have shown that the removable polymer approaches can completely remove polymer residues in SWNT networks and lead to enhanced charge carrier mobility, higher conductivity, and better heterojunction interface.

摘要

对于可穿戴电子设备、义肢和机器人来说,柔软、贴合和可拉伸的电子产品是非常理想的。在各种可用的电子材料中,单壁碳纳米管(SWNTs)及其网络表现出了很高的机械柔韧性和拉伸性,同时具有与传统刚性材料相当的电性能,例如多晶硅和金属氧化物。不幸的是,大量生产的 SWNTs 混合物中含有半导体(s-)和金属(m-)SWNTs,这使得它们不适合电子应用。此外,SWNTs 的溶解度很差,需要引入绝缘表面活性剂才能将其正确分散到各个管中以进行器件制造。与其他 SWNT 分散和分离方法相比,例如 DNA 包裹、密度梯度超速离心和凝胶色谱法,聚合物包裹可以选择性地分散 s-SWNTs,具有高选择性(>99.7%)、高浓度(>0.1mg/mL)和高产量(>20%)。此外,这种方法只需要简单的超声和离心设备,处理时间短至 1 小时。尽管有这些优势,但聚合物包裹方法仍面临两个主要问题:(i)即使经过彻底冲洗,纯化后的 s-SWNTs 表面通常仍保留大量聚合物。残留聚合物的低导电性阻碍了 SWNT 网络中的电荷传输。(ii)用于 SWNT 包裹的共轭聚合物价格昂贵。它们的价格($100-1000/g)与 SWNTs 的价格($10-300/g)相当,甚至更高。这些使用的共轭聚合物占整个分离成本的很大一部分。在本账户中,我们总结了用于选择性分散和分离 SWNTs 的聚合物设计的最新进展。我们特别关注可去除和/或可回收的聚合物,这些聚合物能够实现低成本和可扩展的分离方法。首先,我们比较了不同的分离方法,以展示聚合物包裹方法的优势。具体来说,我们比较了用于纯度评估的不同表征方法。对于纯度>99%的 s-SWNTs,短通道(小于 SWNT 长度)的电测量比光学方法更可靠。其次,我们讨论了可能的分类机制和分子设计策略。聚合物参数,如主链设计和侧链工程,会影响聚合物-SWNT 相互作用,从而导致不同的分散浓度和选择性。为了解决聚合物污染和成本问题这两个限制因素,我们描述了两种重要的聚合物去除和循环方法:(i)改变聚合物包裹构象以释放 SWNTs;(ii)将共轭聚合物解聚成与 SWNTs 亲和力较小的小分子单元。这些方法允许去除和回收包裹聚合物,从而提供低成本和清洁的 s-SWNTs。第三,我们讨论了聚合物分类的 s-SWNTs 的各种应用,包括柔性/可拉伸薄膜晶体管、热电设备和太阳能电池。在这些应用中,聚合物分类的 s-SWNTs 和它们的网络表现出了良好的加工性、有吸引力的机械性能和高的电性能。越来越多的研究表明,可去除聚合物的方法可以完全去除 SWNT 网络中的聚合物残留物,并提高载流子迁移率、导电性和更好的异质结界面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验