Suppr超能文献

激活和肌腱形态会影响肌肌腱结合部附近活体肌肉组织的应变。

Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction.

机构信息

Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

J Biomech. 2012 Feb 23;45(4):647-52. doi: 10.1016/j.jbiomech.2011.12.015. Epub 2012 Jan 10.

Abstract

Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.

摘要

腘绳肌拉伤是运动员中最常见的损伤之一,尤其是在涉及高速奔跑的运动中。本研究的目的是确定肌肉激活和内部形态是否会影响活体肌肉行为和拉伤易感性。我们使用电影 DENSE 动态磁共振成像测量了最常受伤的腘绳肌——股二头肌长头肌(BFLH)的组织位移和应变。应变测量用于测试应变幅度是否(i)在主动伸展时大于被动伸展时,以及(ii)在近端腱膜相对较窄的受试者中大于近端腱膜较宽的受试者。位移彩色图谱显示,随着与近端腱膜的横向距离增加,无论是主动伸展还是被动伸展,组织位移都增加,主动伸展的组织位移大于被动伸展。第一主应变幅度在靠近肌肌腱交界处的 1cm 区域内平均,这是最常观察到损伤的部位。结果发现,主动伸展时的应变明显大于被动伸展时的应变(0.19 SD 0.09 对 0.13 SD 0.06)(p<0.05),这表明在主动伸展而不是被动伸展时,局部应变升高可能是增加损伤风险的机制。对于近端腱膜宽度相对较窄的受试者(0.26 SD 0.15),第一主应变幅度较高,而近端腱膜宽度较宽的受试者(0.14 SD 0.04)(p<0.05)。这一结果表明,近端腱膜较窄的 BFLH 肌肉的运动员可能有更高的 BFLH 拉伤风险。

相似文献

1
Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction.
J Biomech. 2012 Feb 23;45(4):647-52. doi: 10.1016/j.jbiomech.2011.12.015. Epub 2012 Jan 10.
2
Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running.
J Biomech. 2014 Oct 17;47(13):3325-33. doi: 10.1016/j.jbiomech.2014.08.010. Epub 2014 Aug 16.
3
The influence of prior hamstring injury on lengthening muscle tissue mechanics.
J Biomech. 2010 Aug 26;43(12):2254-60. doi: 10.1016/j.jbiomech.2010.02.038. Epub 2010 May 15.
5
Computational models predict larger muscle tissue strains at faster sprinting speeds.
Med Sci Sports Exerc. 2014 Apr;46(4):776-86. doi: 10.1249/MSS.0000000000000172.
6
The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model.
J Biomech. 2010 Sep 17;43(13):2574-81. doi: 10.1016/j.jbiomech.2010.05.011. Epub 2010 Jun 11.
7
Site-specific features of active muscle stiffness and proximal aponeurosis strain in biceps femoris long head.
Scand J Med Sci Sports. 2021 Aug;31(8):1666-1673. doi: 10.1111/sms.13973. Epub 2021 Apr 29.
8
Biceps Femoris Aponeurosis Size: A Potential Risk Factor for Strain Injury?
Med Sci Sports Exerc. 2015 Jul;47(7):1383-9. doi: 10.1249/MSS.0000000000000550.
9
Biceps femoris and semitendinosus tendon/aponeurosis strain during passive and active (isometric) conditions.
J Electromyogr Kinesiol. 2016 Feb;26:111-9. doi: 10.1016/j.jelekin.2015.11.007. Epub 2015 Dec 10.
10
MR observations of long-term musculotendon remodeling following a hamstring strain injury.
Skeletal Radiol. 2008 Dec;37(12):1101-9. doi: 10.1007/s00256-008-0546-0. Epub 2008 Jul 23.

引用本文的文献

1
Anatomical insights into the proximal aponeurosis of the long head of the biceps femoris.
Eur J Histochem. 2025 Apr 7;69(2). doi: 10.4081/ejh.2025.4165. Epub 2025 May 13.
2
Fascia and Muscle Stiffness in Soccer Athletes with and Without Previous Hamstring Injury.
J Funct Morphol Kinesiol. 2025 Jan 28;10(1):48. doi: 10.3390/jfmk10010048.
3
The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury.
Sports Med Open. 2024 Dec 24;10(1):133. doi: 10.1186/s40798-024-00789-3.
4
Hamstrings Are Stretched More and Faster during Accelerative Running Compared to Speed-Matched Constant-Speed Running.
Med Sci Sports Exerc. 2025 Mar 1;57(3):461-469. doi: 10.1249/MSS.0000000000003577. Epub 2024 Oct 24.
6
Myotendinous Junction: Exercise Protocols Can Positively Influence Their Development in Rats.
Biomedicines. 2022 Feb 18;10(2):480. doi: 10.3390/biomedicines10020480.
7
A 3D model of the soleus reveals effects of aponeuroses morphology and material properties on complex muscle fascicle behavior.
J Biomech. 2022 Jan;130:110877. doi: 10.1016/j.jbiomech.2021.110877. Epub 2021 Nov 27.
8
Biceps femoris long head sarcomere and fascicle length adaptations after 3 weeks of eccentric exercise training.
J Sport Health Sci. 2022 Jan;11(1):43-49. doi: 10.1016/j.jshs.2021.09.002. Epub 2021 Sep 9.
9
Hamstrings load bearing in different contraction types and intensities: A shear-wave and B-mode ultrasonographic study.
PLoS One. 2021 May 19;16(5):e0251939. doi: 10.1371/journal.pone.0251939. eCollection 2021.
10
Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo.
J Appl Physiol (1985). 2019 May 1;126(5):1454-1464. doi: 10.1152/japplphysiol.00672.2018. Epub 2018 Sep 20.

本文引用的文献

2
Epidemiology of muscle injuries in professional football (soccer).
Am J Sports Med. 2011 Jun;39(6):1226-32. doi: 10.1177/0363546510395879. Epub 2011 Feb 18.
3
Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction.
Am J Physiol Regul Integr Comp Physiol. 2011 May;300(5):R1079-90. doi: 10.1152/ajpregu.00474.2010. Epub 2011 Jan 26.
5
The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model.
J Biomech. 2010 Sep 17;43(13):2574-81. doi: 10.1016/j.jbiomech.2010.05.011. Epub 2010 Jun 11.
6
The influence of prior hamstring injury on lengthening muscle tissue mechanics.
J Biomech. 2010 Aug 26;43(12):2254-60. doi: 10.1016/j.jbiomech.2010.02.038. Epub 2010 May 15.
7
Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.
Am J Physiol Cell Physiol. 2010 Jul;299(1):C14-20. doi: 10.1152/ajpcell.00049.2010. Epub 2010 Mar 31.
8
Balanced multipoint displacement encoding for DENSE MRI.
Magn Reson Med. 2009 Apr;61(4):981-8. doi: 10.1002/mrm.21851.
9
Biomechanical response to hamstring muscle strain injury.
Gait Posture. 2009 Feb;29(2):332-8. doi: 10.1016/j.gaitpost.2008.10.054. Epub 2008 Nov 26.
10
MR observations of long-term musculotendon remodeling following a hamstring strain injury.
Skeletal Radiol. 2008 Dec;37(12):1101-9. doi: 10.1007/s00256-008-0546-0. Epub 2008 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验