Suppr超能文献

肌肉肌腱的变异性会影响股二头肌长头在高速跑步时所经历的组织应变。

Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running.

作者信息

Fiorentino Niccolo M, Blemker Silvia S

机构信息

Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.

Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.

出版信息

J Biomech. 2014 Oct 17;47(13):3325-33. doi: 10.1016/j.jbiomech.2014.08.010. Epub 2014 Aug 16.

Abstract

The hamstring muscles frequently suffer injury during high-speed running, though the factors that make an individual more susceptible to injury remain poorly understood. The goals of this study were to measure the musculotendon dimensions of the biceps femoris long head (BFlh) muscle, the hamstring muscle injured most often, and to use computational models to assess the influence of variability in the BFlh's dimensions on internal tissue strains during high-speed running. High-resolution magnetic resonance (MR) images were acquired over the thigh in 12 collegiate athletes, and musculotendon dimensions were measured in the proximal free tendon/aponeurosis, muscle and distal free tendon/aponeurosis. Finite element meshes were generated based on the average, standard deviation and range of BFlh dimensions. Simulation boundary conditions were defined to match muscle activation and musculotendon length change in the BFlh during high-speed running. Muscle and connective tissue dimensions were found to vary between subjects, with a coefficient of variation (CV) of 17±6% across all dimensions. For all simulations peak local strain was highest along the proximal myotendinous junction, which is where injury typically occurs. Model variations showed that peak local tissue strain increased as the proximal aponeurosis width narrowed and the muscle width widened. The aponeurosis width and muscle width variation models showed that the relative dimensions of these structures influence internal muscle tissue strains. The results of this study indicate that a musculotendon unit's architecture influences its strain injury susceptibility during high-speed running.

摘要

腘绳肌在高速奔跑过程中经常受伤,不过导致个体更容易受伤的因素仍未得到充分了解。本研究的目的是测量最常受伤的腘绳肌——股二头肌长头(BFlh)的肌肉肌腱尺寸,并使用计算模型评估BFlh尺寸变化对高速奔跑期间内部组织应变的影响。对12名大学生运动员的大腿进行了高分辨率磁共振(MR)成像,并测量了近端游离肌腱/腱膜、肌肉和远端游离肌腱/腱膜的肌肉肌腱尺寸。基于BFlh尺寸的平均值、标准差和范围生成了有限元网格。定义了模拟边界条件,以匹配高速奔跑期间BFlh中的肌肉激活和肌肉肌腱长度变化。发现受试者之间的肌肉和结缔组织尺寸存在差异,所有尺寸的变异系数(CV)为17±6%。在所有模拟中,局部峰值应变在近端肌腱结合处最高,而此处通常是损伤发生的部位。模型变化表明,随着近端腱膜宽度变窄和肌肉宽度变宽,局部峰值组织应变增加。腱膜宽度和肌肉宽度变化模型表明,这些结构的相对尺寸会影响内部肌肉组织应变。本研究结果表明,肌肉肌腱单元的结构会影响其在高速奔跑期间的应变损伤易感性。

相似文献

1
Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running.
J Biomech. 2014 Oct 17;47(13):3325-33. doi: 10.1016/j.jbiomech.2014.08.010. Epub 2014 Aug 16.
2
Computational models predict larger muscle tissue strains at faster sprinting speeds.
Med Sci Sports Exerc. 2014 Apr;46(4):776-86. doi: 10.1249/MSS.0000000000000172.
3
Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction.
J Biomech. 2012 Feb 23;45(4):647-52. doi: 10.1016/j.jbiomech.2011.12.015. Epub 2012 Jan 10.
4
MR observations of long-term musculotendon remodeling following a hamstring strain injury.
Skeletal Radiol. 2008 Dec;37(12):1101-9. doi: 10.1007/s00256-008-0546-0. Epub 2008 Jul 23.
5
The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model.
J Biomech. 2010 Sep 17;43(13):2574-81. doi: 10.1016/j.jbiomech.2010.05.011. Epub 2010 Jun 11.
6
The influence of prior hamstring injury on lengthening muscle tissue mechanics.
J Biomech. 2010 Aug 26;43(12):2254-60. doi: 10.1016/j.jbiomech.2010.02.038. Epub 2010 May 15.
7
Mechanics of the human hamstring muscles during sprinting.
Med Sci Sports Exerc. 2012 Apr;44(4):647-58. doi: 10.1249/MSS.0b013e318236a3d2.
9
Hamstring musculotendon dynamics during stance and swing phases of high-speed running.
Med Sci Sports Exerc. 2011 Mar;43(3):525-32. doi: 10.1249/MSS.0b013e3181f23fe8.
10
Biceps Femoris Aponeurosis Size: A Potential Risk Factor for Strain Injury?
Med Sci Sports Exerc. 2015 Jul;47(7):1383-9. doi: 10.1249/MSS.0000000000000550.

引用本文的文献

2
3D finite element models reveal regional fatty infiltration modulates tibialis anterior force generating capacity in FSHD.
PLoS One. 2025 Jul 18;20(7):e0319881. doi: 10.1371/journal.pone.0319881. eCollection 2025.
5
The Structure, Function, and Adaptation of Lower-Limb Aponeuroses: Implications for Myo-Aponeurotic Injury.
Sports Med Open. 2024 Dec 24;10(1):133. doi: 10.1186/s40798-024-00789-3.
6
Reliability of Semitendinosus and Biceps Femoris Aponeurosis Thickness Using B-Mode Ultrasound.
J Ultrasound Med. 2025 Mar;44(3):521-534. doi: 10.1002/jum.16616. Epub 2024 Nov 12.
7
Multiscale hamstring muscle adaptations following 9 weeks of eccentric training.
J Sport Health Sci. 2024 Oct 24;14:100996. doi: 10.1016/j.jshs.2024.100996.
8

本文引用的文献

1
Relationships of 35 lower limb muscles to height and body mass quantified using MRI.
J Biomech. 2014 Feb 7;47(3):631-8. doi: 10.1016/j.jbiomech.2013.12.002. Epub 2013 Dec 11.
2
Geometric and architectural contributions to hamstring musculotendinous stiffness.
Clin Biomech (Bristol). 2014 Jan;29(1):105-10. doi: 10.1016/j.clinbiomech.2013.10.011. Epub 2013 Oct 24.
3
Computational models predict larger muscle tissue strains at faster sprinting speeds.
Med Sci Sports Exerc. 2014 Apr;46(4):776-86. doi: 10.1249/MSS.0000000000000172.
5
Three-dimensional geometry of the human biceps femoris long head measured in vivo using magnetic resonance imaging.
Clin Biomech (Bristol). 2013 Mar;28(3):278-84. doi: 10.1016/j.clinbiomech.2012.12.010. Epub 2013 Jan 9.
6
Risk factors for lower extremity muscle injury in professional soccer: the UEFA Injury Study.
Am J Sports Med. 2013 Feb;41(2):327-35. doi: 10.1177/0363546512470634. Epub 2012 Dec 21.
7
Hamstring strength and morphology progression after return to sport from injury.
Med Sci Sports Exerc. 2013 Mar;45(3):448-54. doi: 10.1249/MSS.0b013e3182776eff.
8
Architectural differences between the hamstring muscles.
J Electromyogr Kinesiol. 2012 Aug;22(4):520-6. doi: 10.1016/j.jelekin.2012.03.012. Epub 2012 May 6.
10
Hamstring strain injuries: factors that lead to injury and re-injury.
Sports Med. 2012 Mar 1;42(3):209-26. doi: 10.2165/11594800-000000000-00000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验