Suppr超能文献

完整的蛋白酶体调节颗粒亚基结构。

Complete subunit architecture of the proteasome regulatory particle.

机构信息

Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2012 Jan 11;482(7384):186-91. doi: 10.1038/nature10774.

Abstract

The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes polyubiquitinated substrates. Here we used electron microscopy and a new heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle from yeast. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes and the protein unfolding machinery at subnanometre resolution, outlining the substrate's path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes.

摘要

蛋白酶体是真核细胞中主要的依赖于 ATP 的蛋白酶,但有限的结构信息限制了对其活性的机制理解。蛋白酶体调节颗粒由盖子和底座亚基组成,识别和处理多泛素化底物。在这里,我们使用电子显微镜和盖子的新异源表达系统,从酵母中描绘出调节颗粒的完整亚基结构。我们的研究以亚纳米分辨率揭示了泛素受体、去泛素化酶和蛋白质展开机制的空间排列,概述了底物降解的途径。出乎意料的是,底座展开酶中的 ATP 酶亚基呈螺旋楼梯状排列,为通过中心孔进行底物易位的潜在机制提供了线索。全酶形成时盖子的大构象重排表明去泛素化的变构调节。我们为蛋白酶体降解各种底物的能力提供了结构基础,从而调节重要的细胞过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a131/3285539/97d5dc7384c1/nihms343808f1.jpg

相似文献

1
Complete subunit architecture of the proteasome regulatory particle.
Nature. 2012 Jan 11;482(7384):186-91. doi: 10.1038/nature10774.
3
Conformational switching of the 26S proteasome enables substrate degradation.
Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.
4
ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle.
Cell. 2005 May 20;121(4):553-565. doi: 10.1016/j.cell.2005.03.028.
6
Reconfiguration of the proteasome during chaperone-mediated assembly.
Nature. 2013 May 23;497(7450):512-6. doi: 10.1038/nature12123. Epub 2013 May 5.
7
Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110. Epub 2013 Apr 15.
8
Chaperone-mediated pathway of proteasome regulatory particle assembly.
Nature. 2009 Jun 11;459(7248):861-5. doi: 10.1038/nature08063.
9
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.
10
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii.
Mol Cell. 2009 May 14;34(4):473-84. doi: 10.1016/j.molcel.2009.04.021.

引用本文的文献

1
Association Between Proteasome 26S Subunit, Non-ATPase 3 Methylation and Insulin β Cell Apoptosis in Type 2 Diabetic Mellitus.
Diabetes Metab Syndr Obes. 2025 Sep 3;18:3203-3214. doi: 10.2147/DMSO.S545426. eCollection 2025.
3
Current landscape of the immunoproteasome: implications for disease and therapy.
Cell Death Discov. 2025 Aug 25;11(1):406. doi: 10.1038/s41420-025-02698-0.
5
NMR in the Age of Modern Biomedical Research and Drug Discovery.
J Mol Biol. 2025 Jun 23:169302. doi: 10.1016/j.jmb.2025.169302.
6
The deubiquitinase Rpn11 functions as an allosteric ubiquitin sensor to promote substrate engagement by the 26S proteasome.
Cell Rep. 2025 Jun 24;44(6):115736. doi: 10.1016/j.celrep.2025.115736. Epub 2025 May 22.
7
Structural insights into the ubiquitin-independent midnolin-proteasome pathway.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2505345122. doi: 10.1073/pnas.2505345122. Epub 2025 May 8.
8
Spatial mechanisms of quality control during chaperone-mediated assembly of the proteasome.
Nat Commun. 2025 Apr 9;16(1):3358. doi: 10.1038/s41467-025-58703-8.
9
The Role of the Ubiquitin System in Eye Diseases.
Life (Basel). 2025 Mar 20;15(3):504. doi: 10.3390/life15030504.

本文引用的文献

1
An asymmetric interface between the regulatory and core particles of the proteasome.
Nat Struct Mol Biol. 2011 Oct 30;18(11):1259-67. doi: 10.1038/nsmb.2147.
3
ClpX(P) generates mechanical force to unfold and translocate its protein substrates.
Cell. 2011 Apr 29;145(3):459-69. doi: 10.1016/j.cell.2011.04.010.
4
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
Cell. 2011 Apr 15;145(2):257-67. doi: 10.1016/j.cell.2011.03.036.
5
Defining the geometry of the two-component proteasome degron.
Nat Chem Biol. 2011 Mar;7(3):161-7. doi: 10.1038/nchembio.521. Epub 2011 Jan 30.
6
Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20992-7. doi: 10.1073/pnas.1015530107. Epub 2010 Nov 22.
7
Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12.
J Biol Chem. 2010 Oct 29;285(44):33992-4003. doi: 10.1074/jbc.M110.134510. Epub 2010 Aug 24.
8
Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne.
Nat Struct Mol Biol. 2010 Aug;17(8):939-47. doi: 10.1038/nsmb.1873. Epub 2010 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验