Suppr超能文献

沙鼠内髓质的结构:Henle 袢降支细段的分段。

Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.

机构信息

University of Arizona Health Sciences Center, Department of Physiology, Tucson, Arizona 85724-5051, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R720-6. doi: 10.1152/ajpregu.00549.2011. Epub 2012 Jan 11.

Abstract

We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.

摘要

我们假设,袋鼠鼠 Dipodomys merriami 的髓质内层,一种将尿液浓缩至超过 6,000 mosmol/kgH(2)O 水的沙漠啮齿动物,提供了产生高浓度尿液所需的独特结构特征的例子。为了研究这种结构,我们评估了外髓质下方最初 3,000 μm 内髓质肾单位的结构。使用标记跨上皮水通量(水通道蛋白 1 和 2,AQP1 和 AQP2)和氯离子通量(氯离子通道 ClC-K1)的段特异性蛋白的抗体,通过免疫荧光鉴定出降支细段(DTLs)、升支细段(ATLs)和收集管(CDs);所有的小管和血管均用小麦胚凝集素标记。在外髓质的 3,000 μm 内,AQP1 阳性的 DTL 位于 CD 群的外周。ATLs 位于 CD 群的内部和外部。免疫组化和在 3,000 μm 内髓质的外部形成其弯曲的环的重建显示,与环长度相比,袋鼠鼠的 AQP1 阳性段明显长于慕尼黑-维斯塔大鼠。在袋鼠鼠的环下降侧末端的预弯区 ClC-K1 表达的长度约比慕尼黑-维斯塔大鼠短 50%。与慕尼黑-维斯塔大鼠相比,袋鼠鼠 DTL 的管状液可能通过沿相对较长的管状长度进行水再吸收而接近与间质液的渗透平衡。相对较短的预弯段可能会促进在环弯处更高的吸收驱动力。这些结构特征预测了在袋鼠鼠产生高尿液渗透压方面具有潜在重要功能。

相似文献

1
Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R720-6. doi: 10.1152/ajpregu.00549.2011. Epub 2012 Jan 11.
2
Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R748-56. doi: 10.1152/ajpregu.00300.2012. Epub 2012 Aug 22.
3
Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol. 2004 Jan;286(1):F38-45. doi: 10.1152/ajprenal.00285.2003. Epub 2003 Sep 30.
4
Three-dimensional lateral and vertical relationships of inner medullary loops of Henle and collecting ducts.
Am J Physiol Renal Physiol. 2004 Oct;287(4):F767-74. doi: 10.1152/ajprenal.00122.2004. Epub 2004 Jun 8.
5
Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.
Acta Physiol (Oxf). 2011 Jul;202(3):361-78. doi: 10.1111/j.1748-1716.2010.02214.x. Epub 2010 Dec 7.
6
Mixed descending- and ascending-type thin limbs of Henle's loop in mammalian renal inner medulla.
Am J Physiol Renal Physiol. 2000 Feb;278(2):F202-8. doi: 10.1152/ajprenal.2000.278.2.F202.
7
Axial compartmentation of descending and ascending thin limbs of Henle's loops.
Am J Physiol Renal Physiol. 2013 Feb 1;304(3):F308-16. doi: 10.1152/ajprenal.00547.2012. Epub 2012 Nov 28.
8
Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol. 2014 Jan 1;306(1):F123-9. doi: 10.1152/ajprenal.00491.2013. Epub 2013 Nov 6.
9
Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1306-14. doi: 10.1152/ajprenal.00068.2008. Epub 2008 Apr 16.
10
Three-dimensional architecture of inner medullary vasa recta.
Am J Physiol Renal Physiol. 2006 Jun;290(6):F1355-66. doi: 10.1152/ajprenal.00481.2005. Epub 2005 Dec 27.

引用本文的文献

1
Validating a novel capability of assessing pathways of animal water gain and loss.
R Soc Open Sci. 2025 May 21;12(5):241942. doi: 10.1098/rsos.241942. eCollection 2025 May.
3
A rather dry subject; investigating the study of arid-associated microbial communities.
Environ Microbiome. 2020 Dec 1;15(1):20. doi: 10.1186/s40793-020-00367-6.
4
Renal efficiency underlies adaptive heterothermy of heat-stressed hypohydrated goats.
Trop Anim Health Prod. 2019 Nov;51(8):2287-2295. doi: 10.1007/s11250-019-01948-5. Epub 2019 Jun 1.
5
Mammalian urine concentration: a review of renal medullary architecture and membrane transporters.
J Comp Physiol B. 2018 Nov;188(6):899-918. doi: 10.1007/s00360-018-1164-3. Epub 2018 May 24.
6
Body mass-specific Na-K-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms.
Am J Physiol Regul Integr Comp Physiol. 2018 Apr 1;314(4):R563-R573. doi: 10.1152/ajpregu.00289.2017. Epub 2018 Jan 3.
8
Characterization of a male reproductive transcriptome for (Cactus mouse).
PeerJ. 2016 Oct 27;4:e2617. doi: 10.7717/peerj.2617. eCollection 2016.
9
Architecture of the human renal inner medulla and functional implications.
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.
10
Transcriptomic characterization of the immunogenetic repertoires of heteromyid rodents.
BMC Genomics. 2014 Oct 24;15(1):929. doi: 10.1186/1471-2164-15-929.

本文引用的文献

1
Structure and function of the thin limbs of the loop of Henle.
Compr Physiol. 2012 Jul;2(3):2063-86. doi: 10.1002/cphy.c110019.
2
Isolated interstitial nodal spaces may facilitate preferential solute and fluid mixing in the rat renal inner medulla.
Am J Physiol Renal Physiol. 2012 Apr 1;302(7):F830-9. doi: 10.1152/ajprenal.00539.2011. Epub 2011 Dec 7.
3
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
4
Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow.
Am J Physiol Renal Physiol. 2010 Jul;299(1):F273-9. doi: 10.1152/ajprenal.00072.2010. Epub 2010 Apr 14.
5
Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
Am J Physiol Renal Physiol. 2010 Jul;299(1):F265-72. doi: 10.1152/ajprenal.00071.2010. Epub 2010 Apr 14.
6
Functional implications of the three-dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F973-87. doi: 10.1152/ajprenal.00249.2009. Epub 2010 Jan 6.
7
Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F962-72. doi: 10.1152/ajprenal.00250.2009. Epub 2009 Dec 30.
8
Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Dec;295(6):F1744-51. doi: 10.1152/ajprenal.90483.2008. Epub 2008 Oct 8.
9
Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1271-85. doi: 10.1152/ajprenal.90252.2008. Epub 2008 May 21.
10
Quantitative analysis of functional reconstructions reveals lateral and axial zonation in the renal inner medulla.
Am J Physiol Renal Physiol. 2008 Jun;294(6):F1306-14. doi: 10.1152/ajprenal.00068.2008. Epub 2008 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验