Suppr超能文献

高滤过和内条纹肥大可能解释了 Gamble 及其同事的发现。

Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.

机构信息

Department of Mathematics, Duke University, Durham, NC 27708-0320, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Apr;298(4):F962-72. doi: 10.1152/ajprenal.00250.2009. Epub 2009 Dec 30.

Abstract

Simulations conducted in a mathematical model were used to exemplify the hypothesis that elevated solute concentrations and tubular flows at the boundary of the renal outer and inner medullas of rats may contribute to increased urine osmolalities and urine flow rates. Such elevated quantities at that boundary may arise from hyperfiltration and from inner stripe hypertrophy, which are correlated with increased concentrating activity (Bankir L, Kriz W. Kidney Int. 47: 7-24, 1995). The simulations used the region-based model for the rat inner medulla that was presented in the companion study (Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Am J Physiol Renal Physiol 298: F000-F000, 2010). The simulations were suggested by experiments which were conducted in rat by Gamble et al. (Gamble JL, McKhann CF, Butler AM, Tuthill E. Am J Physiol 109: 139-154, 1934) in which the ratio of NaCl to urea in the diet was systematically varied in eight successive 5-day intervals. The simulations predict that changes in boundary conditions at the boundary of the outer and inner medulla, accompanied by plausible modifications in transport properties of the collecting duct system, can significantly increase urine osmolality and flow rate. This hyperfiltration-hypertrophy hypothesis may explain the finding by Gamble et al. that the maximum urine osmolality attained from supplemental feeding of urea and NaCl in the eight intervals depends on NaCl being the initial predominant solute and on urea being the final predominant solute, because urea in sufficient quantity appears to stimulate concentrating activity. More generally, the hypothesis suggests that high osmolalities and urine flow rates may depend, in large part, on adaptive modifications of cortical hemodynamics and on outer medullary structure and not entirely on an extraordinary concentrating capability that is intrinsic to the inner medulla.

摘要

采用数学模型进行的模拟实验例证了这样一种假说,即大鼠肾外髓和内髓边界处溶质浓度升高和管状流可能导致尿液渗透压和尿液流速增加。这种边界处的升高可能源于超滤和内条纹肥大,而这两者与浓缩活性的增加有关(Bankir L,Kriz W。Kidney Int. 47:7-24,1995)。模拟实验使用了与伴生研究中介绍的大鼠内髓区域模型(Layton AT,Pannabecker TL,Dantzler WH,Layton HE。Am J Physiol Renal Physiol 298:F000-F000,2010)。这些模拟实验是由 Gamble 等人在大鼠中进行的实验所提出的(Gamble JL,McKhann CF,Butler AM,Tuthill E。Am J Physiol 109:139-154,1934),实验中饮食中的 NaCl 与尿素的比例在连续的 8 个 5 天间隔内被系统地改变。模拟实验预测,外髓和内髓边界处边界条件的变化,伴随着收集管系统转运特性的合理改变,可显著增加尿液渗透压和流速。这种超滤-肥大假说可以解释 Gamble 等人的发现,即在 8 个间隔中通过补充尿素和 NaCl 喂养达到的最大尿液渗透压取决于 NaCl 作为初始主要溶质和尿素作为最终主要溶质,因为足够数量的尿素似乎会刺激浓缩活性。更一般地说,该假说表明,高渗透压和尿液流速可能在很大程度上取决于皮质血液动力学的适应性改变以及外髓的结构,而不完全依赖于内髓固有的非凡浓缩能力。

相似文献

1
Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F962-72. doi: 10.1152/ajprenal.00250.2009. Epub 2009 Dec 30.
2
Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
Bull Math Biol. 2010 Feb;72(2):314-39. doi: 10.1007/s11538-009-9448-0.
3
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
4
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1367-81. doi: 10.1152/ajprenal.00347.2003. Epub 2005 May 24.
5
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.
6
A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71. doi: 10.1152/ajprenal.00203.2010. Epub 2010 Nov 10.
7
An optimization study of a mathematical model of the urine concentrating mechanism of the rat kidney.
Math Biosci. 2010 Jan;223(1):66-78. doi: 10.1016/j.mbs.2009.10.009. Epub 2009 Nov 3.
8
Effect of vasa recta flow on concentrating ability of models of renal inner medulla.
Am J Physiol. 1995 Apr;268(4 Pt 2):F698-709. doi: 10.1152/ajprenal.1995.268.4.F698.
9
Cycles and separations in a model of the renal medulla.
Am J Physiol. 1998 Nov;275(5):F671-90. doi: 10.1152/ajprenal.1998.275.5.F671.
10
Role of UTB urea transporters in the urine concentrating mechanism of the rat kidney.
Bull Math Biol. 2007 Apr;69(3):887-929. doi: 10.1007/s11538-005-9030-3.

引用本文的文献

1
Impact of renal medullary three-dimensional architecture on oxygen transport.
Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F263-72. doi: 10.1152/ajprenal.00149.2014. Epub 2014 Jun 4.
2
Modeling Transport and Flow Regulatory Mechanisms of the Kidney.
ISRN Biomath. 2012 Jul 12;2012(2012). doi: 10.5402/2012/170594.
3
Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.
Am J Physiol Regul Integr Comp Physiol. 2012 Mar 15;302(6):R720-6. doi: 10.1152/ajpregu.00549.2011. Epub 2012 Jan 11.
4
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.

本文引用的文献

1
Functional implications of the three-dimensional architecture of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F973-87. doi: 10.1152/ajprenal.00249.2009. Epub 2010 Jan 6.
2
A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F537-48. doi: 10.1152/ajprenal.90497.2008. Epub 2009 Apr 29.
3
Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.
Am J Physiol Renal Physiol. 2008 Nov;295(5):F1271-85. doi: 10.1152/ajprenal.90252.2008. Epub 2008 May 21.
4
Aquaporin-1 is not expressed in descending thin limbs of short-loop nephrons.
J Am Soc Nephrol. 2007 Nov;18(11):2937-44. doi: 10.1681/ASN.2007010056. Epub 2007 Oct 17.
5
Gamble's "economy of water" revisited: studies in urea transporter knockout mice.
Am J Physiol Renal Physiol. 2006 Jul;291(1):F148-54. doi: 10.1152/ajprenal.00348.2005. Epub 2006 Feb 14.
6
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1346-66. doi: 10.1152/ajprenal.00346.2003. Epub 2005 May 24.
7
A region-based mathematical model of the urine concentrating mechanism in the rat outer medulla. II. Parameter sensitivity and tubular inhomogeneity.
Am J Physiol Renal Physiol. 2005 Dec;289(6):F1367-81. doi: 10.1152/ajprenal.00347.2003. Epub 2005 May 24.
8
Two modes for concentrating urine in rat inner medulla.
Am J Physiol Renal Physiol. 2004 Oct;287(4):F816-39. doi: 10.1152/ajprenal.00398.2003. Epub 2004 Jun 22.
9
Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7469-74. doi: 10.1073/pnas.0401704101. Epub 2004 May 3.
10
Three-dimensional functional reconstruction of inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol. 2004 Jan;286(1):F38-45. doi: 10.1152/ajprenal.00285.2003. Epub 2003 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验