Suppr超能文献

p53 的激活机制及其在肾脏发育中的生理相关性。

Mechanisms of p53 activation and physiological relevance in the developing kidney.

机构信息

Department of Pediatrics,, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F928-40. doi: 10.1152/ajprenal.00642.2011. Epub 2012 Jan 11.

Abstract

The tumor suppressor protein p53 is a short-lived transcription factor due to Mdm2-mediated proteosomal degradation. In response to genotoxic stress, p53 is stabilized via posttranslational modifications which prevent Mdm2 binding. p53 activation results in cell cycle arrest and apoptosis. We previously reported that tight regulation of p53 activity is an absolute requirement for normal nephron differentiation (Hilliard S, Aboudehen K, Yao X, El-Dahr SS Dev Biol 353: 354-366, 2011). However, the mechanisms of p53 activation in the developing kidney are unknown. We show here that metanephric p53 is phosphorylated and acetylated on key serine and lysine residues, respectively, in a temporal profile which correlates with the maturational changes in total p53 levels and DNA-binding activity. Site-directed mutagenesis revealed a differential role for these posttranslational modifications in mediating p53 stability and transcriptional regulation of renal function genes (RFGs). Section immunofluorescence also revealed that p53 modifications confer the protein with specific spatiotemporal expression patterns. For example, phos-p53(S392) is enriched in maturing proximal tubular epithelial cells, whereas acetyl-p53(K373/K382/K386) are expressed in nephron progenitors. Functionally, p53 occupancy of RFG promoters is enhanced at the onset of tubular differentiation, and p53 loss or gain of function indicates that p53 is necessary but not sufficient for RFG expression. We conclude that posttranslational modifications are important determinants of p53 stability and physiological functions in the developing kidney. We speculate that the stress/hypoxia of the embryonic microenvironment may provide the stimulus for p53 activation in the developing kidney.

摘要

肿瘤抑制蛋白 p53 由于 Mdm2 介导的蛋白体降解而成为一种短寿命的转录因子。在应对遗传毒性应激时,p53 通过阻止 Mdm2 结合的翻译后修饰而稳定下来。p53 的激活导致细胞周期停滞和细胞凋亡。我们之前报道过,p53 活性的严格调节是正常肾单位分化的绝对要求 (Hilliard S, Aboudehen K, Yao X, El-Dahr SS Dev Biol 353: 354-366, 2011)。然而,发育中的肾脏中 p53 的激活机制尚不清楚。我们在这里表明,后肾 p53 在关键丝氨酸和赖氨酸残基上分别发生磷酸化和乙酰化,其时间模式与总 p53 水平和 DNA 结合活性的成熟变化相关。定点突变揭示了这些翻译后修饰在介导 p53 稳定性和调节肾脏功能基因 (RFGs) 的转录中的不同作用。节段免疫荧光还显示,p53 修饰赋予蛋白质特定的时空表达模式。例如,磷酸化 p53(S392)在成熟的近端肾小管上皮细胞中富集,而乙酰化 p53(K373/K382/K386)则在肾祖细胞中表达。功能上,在管状分化开始时,RFG 启动子上的 p53 占据增强,而 p53 的缺失或获得功能表明 p53 对于 RFG 的表达是必要的,但不是充分的。我们得出结论,翻译后修饰是 p53 在发育中的肾脏中稳定性和生理功能的重要决定因素。我们推测胚胎微环境的应激/缺氧可能为发育中的肾脏中 p53 的激活提供了刺激。

相似文献

1
Mechanisms of p53 activation and physiological relevance in the developing kidney.
Am J Physiol Renal Physiol. 2012 Apr 15;302(8):F928-40. doi: 10.1152/ajprenal.00642.2011. Epub 2012 Jan 11.
3
Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate.
J Cell Biol. 2006 May 22;173(4):533-44. doi: 10.1083/jcb.200512059.
4
A role for p53 in terminal epithelial cell differentiation.
J Clin Invest. 2002 Apr;109(8):1021-30. doi: 10.1172/JCI13972.
7
Methylation-acetylation interplay activates p53 in response to DNA damage.
Mol Cell Biol. 2007 Oct;27(19):6756-69. doi: 10.1128/MCB.00460-07. Epub 2007 Jul 23.

引用本文的文献

1
State of the Art of Pharmacological Activators of p53 in Ocular Malignancies.
Cancers (Basel). 2023 Jul 12;15(14):3593. doi: 10.3390/cancers15143593.
4
Regulation of kidney development by the Mdm2/Mdm4-p53 axis.
J Mol Cell Biol. 2017 Feb 1;9(1):26-33. doi: 10.1093/jmcb/mjx005.
5
Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos.
Toxicol Sci. 2016 Aug;152(2):297-308. doi: 10.1093/toxsci/kfw089. Epub 2016 May 13.
6
Podocyte p53 Limits the Severity of Experimental Alport Syndrome.
J Am Soc Nephrol. 2016 Jan;27(1):144-57. doi: 10.1681/ASN.2014111109. Epub 2015 May 12.
7
Renal progenitors and childhood: from development to disorders.
Pediatr Nephrol. 2014 Apr;29(4):711-9. doi: 10.1007/s00467-013-2686-2. Epub 2014 Jan 4.
8
In situ histone landscape of nephrogenesis.
Epigenetics. 2014 Feb;9(2):222-35. doi: 10.4161/epi.26793. Epub 2013 Oct 29.
9
The MDM2-p53 pathway: multiple roles in kidney development.
Pediatr Nephrol. 2014 Apr;29(4):621-7. doi: 10.1007/s00467-013-2629-y.
10
A p53-Pax2 pathway in kidney development: implications for nephrogenesis.
PLoS One. 2012;7(9):e44869. doi: 10.1371/journal.pone.0044869. Epub 2012 Sep 12.

本文引用的文献

1
Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching.
Dev Biol. 2011 May 15;353(2):354-66. doi: 10.1016/j.ydbio.2011.03.017. Epub 2011 Mar 21.
3
G9a and Glp methylate lysine 373 in the tumor suppressor p53.
J Biol Chem. 2010 Mar 26;285(13):9636-9641. doi: 10.1074/jbc.M109.062588. Epub 2010 Jan 29.
4
Massively regulated genes: the example of TP53.
J Pathol. 2010 Jan;220(2):164-73. doi: 10.1002/path.2637.
5
p53 regulates metanephric development.
J Am Soc Nephrol. 2009 Nov;20(11):2328-37. doi: 10.1681/ASN.2008121224. Epub 2009 Sep 3.
6
Tumour suppression by p53: the importance of apoptosis and cellular senescence.
J Pathol. 2009 Sep;219(1):3-15. doi: 10.1002/path.2584.
7
Modes of p53 regulation.
Cell. 2009 May 15;137(4):609-22. doi: 10.1016/j.cell.2009.04.050.
8
Modifications of p53: competing for the lysines.
Curr Opin Genet Dev. 2009 Feb;19(1):18-24. doi: 10.1016/j.gde.2008.11.010.
10
p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo.
Mol Cell Biol. 2008 Sep;28(17):5139-46. doi: 10.1128/MCB.00287-08. Epub 2008 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验