Laboratory of Advanced Catalysis for Sustainability, School of Chemistry F11, The University of Sydney, Sydney, Australia.
Dalton Trans. 2012 Mar 7;41(9):2545-59. doi: 10.1039/c2dt11864e. Epub 2012 Jan 12.
The unique properties exhibited by nanoscale materials, coupled with the multitude of chemical surface derivatisation possibilities, enable the rational design of multifunctional nanoscopic devices. Such functional devices offer exciting new opportunities in medical research and much effort is currently invested in the area of "nanomedicine", including: multimodal imaging diagnostic tools, platforms for drug delivery and vectorisation, polyvalent, multicomponent vaccines, and composite devices for "theranostics". Here we will review the surface derivatisation of nanoparticulate oxides of iron and iron@iron-oxide core-shells. They are attractive candidates for MRI-active therapeutic platforms, being potentially less toxic than lanthanide-based materials, and amenable to functionalisation with ligands. However successful grafting of groups onto the surface of iron-based nanoparticles, thus adding functionality whilst preserving their inherent properties, is one of the most difficult challenges for creating truly useful nanodevices from them. Functionalised catechol-derived ligands have enjoyed success as agents for the masking of superparamagnetic iron-oxide particles, often so as to render them biocompatible with medium to long-term colloidal stability in the complex chemical environments of biological milieux. In this perspective, the opportunities and limitations of functionalising the surfaces of iron-oxide nanoparticles, using coatings containing a catechol-derived anchor, are analysed and discussed, including recent advances using dopamine-terminated stabilising ligands. If light-driven ligand to metal charge transfer (LMCT) processes, and pH-dependent ligand desorption, leading to nanoparticle degradation under physiologically relevant conditions can be suppressed, colloidal stability of samples can be maintained and toxicity ascribed to degradation products avoided. Modulation of the redox behaviour of iron catecholate systems through the introduction of an electron-withdrawing substituent to the aromatic π-system of the catechol is a promising approach towards achieving these goals.
纳米材料所表现出的独特性质,加上其化学表面衍生化的多种可能性,使多功能纳米级设备的合理设计成为可能。这些功能性设备在医学研究中提供了令人兴奋的新机会,目前人们正在投入大量精力研究“纳米医学”领域,包括:多模态成像诊断工具、药物输送和载体化平台、多价、多组分疫苗以及用于“治疗诊断”的复合设备。在这里,我们将回顾铁的纳米粒子和铁@氧化铁核壳的表面衍生化。它们是 MRI 活性治疗平台的有吸引力的候选者,由于其潜在毒性低于镧系材料,并且可以用配体进行功能化。然而,成功地将基团嫁接到铁基纳米粒子的表面上,从而在保持其固有特性的同时添加功能,是从它们中创建真正有用的纳米器件的最困难挑战之一。功能化的儿茶酚衍生配体已成功用作超顺磁性氧化铁颗粒的掩蔽剂,通常是为了使它们在生物环境中复杂的化学环境中具有中等至长期胶体稳定性的生物相容性。在这种观点中,使用含有儿茶酚衍生锚的涂层来功能化氧化铁纳米粒子表面的机会和局限性进行了分析和讨论,包括最近使用多巴胺末端稳定配体的进展。如果可以抑制光驱动配体到金属电荷转移(LMCT)过程和 pH 依赖性配体解吸,导致纳米粒子在生理相关条件下降解,则可以保持胶体稳定性并避免归因于降解产物的毒性。通过向儿茶酚的芳香π系统中引入吸电子取代基来调节铁儿茶酚体系的氧化还原行为是实现这些目标的一种很有前途的方法。