Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America.
PLoS Genet. 2011 Dec;7(12):e1002423. doi: 10.1371/journal.pgen.1002423. Epub 2011 Dec 29.
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3(K9L) or hH3(K9R)) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3(WT)). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9.
真核生物基因组被划分为活跃和非活跃的区域,分别称为常染色质和异染色质。在粗糙脉孢菌中,异染色质的形成需要 SET 结构域蛋白 DIM-5 将组蛋白 H3 的赖氨酸 9(H3K9)甲基化。异染色质蛋白 1(HP1)读取这个标记,并直接招募 DNA 甲基转移酶 DIM-2。带有 K9 取代的异位 H3 基因(hH3(K9L)或 hH3(K9R))会导致在野生型 hH3(hH3(WT))存在的情况下,DNA 甲基化的全局丢失。我们研究了 H3 氨基末端尾部的其他残基是否对 DNA 和 H3K9 的甲基化很重要。生成了 H3 氨基末端尾部的突变,并在存在或不存在野生型等位基因的情况下,在体外和体内进行了测试。在没有野生型等位基因的情况下,H3 的 K4、K9、T11、G12、G13、K14、K27、S28 和 K36 的取代是致命的。相比之下,带有 R2、A7、R8、S10、A15、P16、R17、K18 和 K23 取代的突变体是有活力的。取代对 DNA 甲基化的影响是多样的;有些是隐性的,而另一些则导致 DNA 甲基化的半显性丢失。R2、A7、R8、S10、T11、G12、G13、K14 和 P16 的取代在体内导致部分或完全丧失 DNA 甲基化。只有 R8-G12 残基是 DIM-5 体外活性所必需的。DIM-5 活性被 H3K4 的二甲基化和 H3S10 的磷酸化抑制,但不受 H3K14 的乙酰化影响。我们得出结论,H3 尾部充当影响 DNA 甲基化的信号的整合平台,部分通过 H3K9 的甲基化。