Dipartimento di Matematica and MECENAS, Università di Bari, I-70125 Bari, Italy.
Phys Rev Lett. 2011 Dec 23;107(26):260502. doi: 10.1103/PhysRevLett.107.260502. Epub 2011 Dec 19.
The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
GHZ 态的产生是量子信息中的一个关键问题。我们推导出了用哈密顿量得到 GHZ 态本征态的一般条件。我们发现,n 个qubit 的 GHZ 态作为哈密顿量的非简并本征态的一个必要条件是存在 m 个qubit 的耦合,其中 m≥[(n+1)/2]。此外,我们引入了一个具有 GHZ 本征态的哈密顿量,并推导出了消除简并的充分条件。