Suppr超能文献

相互抑制的抑制:刺激选择中用于灵活分类的电路模式。

Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection.

机构信息

Department of Neurobiology, Stanford University, 299 W. Campus Drive, Stanford, CA 94305, USA.

出版信息

Neuron. 2012 Jan 12;73(1):193-205. doi: 10.1016/j.neuron.2011.10.037.

Abstract

As a precursor to the selection of a stimulus for gaze and attention, a midbrain network categorizes stimuli into "strongest" and "others." The categorization tracks flexibly, in real time, the absolute strength of the strongest stimulus. In this study, we take a first-principles approach to computations that are essential for such categorization. We demonstrate that classical feedforward lateral inhibition cannot produce flexible categorization. However, circuits in which the strength of lateral inhibition varies with the relative strength of competing stimuli categorize successfully. One particular implementation--reciprocal inhibition of feedforward lateral inhibition--is structurally the simplest, and it outperforms others in flexibly categorizing rapidly and reliably. Strong predictions of this anatomically supported circuit model are validated by neural responses measured in the owl midbrain. The results demonstrate the extraordinary power of a remarkably simple, neurally grounded circuit motif in producing flexible categorization, a computation fundamental to attention, perception, and decision making.

摘要

作为选择注视和注意的刺激物的前奏,中脑网络将刺激物分为“最强”和“其他”。这种分类实时灵活地跟踪最强刺激物的绝对强度。在这项研究中,我们采用了一种基本原理方法来进行计算,这些计算对于这种分类是必不可少的。我们证明经典的前馈侧抑制不能产生灵活的分类。然而,其中侧抑制的强度随竞争刺激物的相对强度而变化的电路可以成功地进行分类。一个特殊的实现——前馈侧抑制的相互抑制——在结构上是最简单的,并且在快速可靠地灵活分类方面表现优于其他。这种具有解剖学支持的电路模型的强烈预测得到了在猫头鹰中脑测量的神经反应的验证。结果表明,一种非常简单、基于神经的电路模式在产生灵活分类方面具有非凡的力量,这种计算是注意力、感知和决策的基础。

相似文献

2
Adaptive switches in midbrain circuits.中脑回路中的自适应开关。
Neuron. 2012 Jan 12;73(1):6-7. doi: 10.1016/j.neuron.2011.12.017.
4
Categorical Signaling of the Strongest Stimulus by an Inhibitory Midbrain Nucleus.中脑抑制核对最强刺激的分类信号传递。
J Neurosci. 2020 May 20;40(21):4172-4184. doi: 10.1523/JNEUROSCI.0042-20.2020. Epub 2020 Apr 16.
5
Signaling of the strongest stimulus in the owl optic tectum.猫头鹰视顶盖最强刺激的信号传递。
J Neurosci. 2011 Apr 6;31(14):5186-96. doi: 10.1523/JNEUROSCI.4592-10.2011.
10
The role of a midbrain network in competitive stimulus selection.中脑网络在竞争刺激选择中的作用。
Curr Opin Neurobiol. 2011 Aug;21(4):653-60. doi: 10.1016/j.conb.2011.05.024. Epub 2011 Jun 21.

引用本文的文献

3
Neural flip-flops I: Short-term memory.神经触发器 I:短期记忆。
PLoS One. 2024 Mar 15;19(3):e0300534. doi: 10.1371/journal.pone.0300534. eCollection 2024.
4
Multilevel visual motion opponency in Drosophila.果蝇中的多层次视觉运动拮抗作用。
Nat Neurosci. 2023 Nov;26(11):1894-1905. doi: 10.1038/s41593-023-01443-z. Epub 2023 Oct 2.
7
A Midbrain Inspired Recurrent Neural Network Model for Robust Change Detection.基于中脑的鲁棒性变化检测递归神经网络模型。
J Neurosci. 2022 Nov 2;42(44):8262-8283. doi: 10.1523/JNEUROSCI.0164-22.2022. Epub 2022 Sep 19.
9
The Ecological View of Selective Attention.选择性注意的生态学观点。
Front Integr Neurosci. 2022 Mar 21;16:856207. doi: 10.3389/fnint.2022.856207. eCollection 2022.

本文引用的文献

3
The role of a midbrain network in competitive stimulus selection.中脑网络在竞争刺激选择中的作用。
Curr Opin Neurobiol. 2011 Aug;21(4):653-60. doi: 10.1016/j.conb.2011.05.024. Epub 2011 Jun 21.
6
A normalization model of multisensory integration.多感觉整合的归一化模型。
Nat Neurosci. 2011 Jun;14(6):775-82. doi: 10.1038/nn.2815. Epub 2011 May 8.
7
Signaling of the strongest stimulus in the owl optic tectum.猫头鹰视顶盖最强刺激的信号传递。
J Neurosci. 2011 Apr 6;31(14):5186-96. doi: 10.1523/JNEUROSCI.4592-10.2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验