Suppr超能文献

多感觉整合的归一化模型。

A normalization model of multisensory integration.

机构信息

Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, New York, USA.

出版信息

Nat Neurosci. 2011 Jun;14(6):775-82. doi: 10.1038/nn.2815. Epub 2011 May 8.

Abstract

Responses of neurons that integrate multiple sensory inputs are traditionally characterized in terms of a set of empirical principles. However, a simple computational framework that accounts for these empirical features of multisensory integration has not been established. We propose that divisive normalization, acting at the stage of multisensory integration, can account for many of the empirical principles of multisensory integration shown by single neurons, such as the principle of inverse effectiveness and the spatial principle. This model, which uses a simple functional operation (normalization) for which there is considerable experimental support, also accounts for the recent observation that the mathematical rule by which multisensory neurons combine their inputs changes with cue reliability. The normalization model, which makes a strong testable prediction regarding cross-modal suppression, may therefore provide a simple unifying computational account of the important features of multisensory integration by neurons.

摘要

传统上,对整合多种感觉输入的神经元的反应是根据一组经验原则来描述的。然而,尚未建立一个简单的计算框架来解释多感觉整合的这些经验特征。我们提出,在多感觉整合阶段起作用的分散归一化可以解释单神经元表现出的许多多感觉整合的经验原则,例如反效性原则和空间原则。该模型使用了一种简单的功能操作(归一化),这种操作有相当多的实验支持,也解释了最近观察到的多感觉神经元组合其输入的数学规则随线索可靠性而变化的现象。归一化模型对跨模态抑制做出了强有力的可测试预测,因此可能为神经元多感觉整合的重要特征提供了一个简单的统一计算解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21c0/3102778/37336519c1aa/nihms283463f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验