Medical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.
Med Image Anal. 2012 May;16(4):819-30. doi: 10.1016/j.media.2011.12.003. Epub 2011 Dec 22.
We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter-subject brain variation. Manifold coordinates of each image capture information about structural shape and appearance and, when a phenotype exists, about the subject's clinical state. Our framework incorporates subject meta-information into the manifold learning step. Apart from gender and age, information such as genotype or a derived biomarker is often available in clinical studies and can inform the classification of a query subject. Such information, whether discrete or continuous, is used as an additional input to manifold learning, extending the Laplacian Eigenmap objective function and enriching a similarity measure derived from pairwise image similarities. The biomarkers identified with the proposed method are data-driven in contrast to a priori defined biomarkers derived from, e.g., manual or automated segmentations. They form a unified representation of both the imaging and non-imaging measurements, providing a natural use for data analysis and visualization. We test the method to classify subjects with Alzheimer's Disease (AD), mild cognitive impairment (MCI) and healthy controls enrolled in the ADNI study. Non-imaging metadata used are ApoE genotype, a risk factor associated with AD, and the CSF-concentration of Aβ(1-42), an established biomarker for AD. In addition, we use hippocampal volume as a derived imaging-biomarker to enrich the learned manifold. Our classification results compare favorably to what has been reported in a recent meta-analysis using established neuroimaging methods on the same database.
我们提出了一个从代表个体间大脑差异的低维流形中提取生物标志物的框架。每个图像的流形坐标都捕获了关于结构形状和外观的信息,并且在存在表型的情况下,还捕获了关于主体临床状态的信息。我们的框架将主体元信息纳入流形学习步骤。除了性别和年龄之外,临床研究中通常还可以获得基因型或衍生生物标志物等信息,这可以为查询主体的分类提供信息。这种信息无论是离散的还是连续的,都被用作流形学习的附加输入,扩展了拉普拉斯特征映射目标函数,并丰富了从成对图像相似性得出的相似性度量。与从手动或自动分割等方法衍生的先验定义生物标志物不同,所提出的方法识别的生物标志物是数据驱动的。它们形成了成像和非成像测量的统一表示,为数据分析和可视化提供了自然的用途。我们使用 ADNI 研究中招募的阿尔茨海默病(AD)、轻度认知障碍(MCI)和健康对照者的方法来测试该方法对主体的分类。使用的非成像元数据是 ApoE 基因型,这是与 AD 相关的一个风险因素,以及 CSF 中 Aβ(1-42)的浓度,这是 AD 的一个已建立的生物标志物。此外,我们使用海马体积作为衍生的成像生物标志物来丰富学习的流形。我们的分类结果与最近使用相同数据库中的既定神经影像学方法进行的荟萃分析报告的结果相比具有优势。
Med Image Anal. 2011-12-22
IEEE Trans Biomed Eng. 2017-1
Med Image Comput Comput Assist Interv. 2013
Med Image Comput Comput Assist Interv. 2014
Comput Methods Programs Biomed. 2015-8-10
Sensors (Basel). 2021-11-17
Mach Learn Med Imaging. 2018-9
IEEE Trans Biomed Eng. 2018-9-12
Med Image Anal. 2017-10-27