文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合磁共振成像与非影像信息的非线性维数缩减。

Nonlinear dimensionality reduction combining MR imaging with non-imaging information.

机构信息

Medical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK.

出版信息

Med Image Anal. 2012 May;16(4):819-30. doi: 10.1016/j.media.2011.12.003. Epub 2011 Dec 22.


DOI:10.1016/j.media.2011.12.003
PMID:22244037
Abstract

We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter-subject brain variation. Manifold coordinates of each image capture information about structural shape and appearance and, when a phenotype exists, about the subject's clinical state. Our framework incorporates subject meta-information into the manifold learning step. Apart from gender and age, information such as genotype or a derived biomarker is often available in clinical studies and can inform the classification of a query subject. Such information, whether discrete or continuous, is used as an additional input to manifold learning, extending the Laplacian Eigenmap objective function and enriching a similarity measure derived from pairwise image similarities. The biomarkers identified with the proposed method are data-driven in contrast to a priori defined biomarkers derived from, e.g., manual or automated segmentations. They form a unified representation of both the imaging and non-imaging measurements, providing a natural use for data analysis and visualization. We test the method to classify subjects with Alzheimer's Disease (AD), mild cognitive impairment (MCI) and healthy controls enrolled in the ADNI study. Non-imaging metadata used are ApoE genotype, a risk factor associated with AD, and the CSF-concentration of Aβ(1-42), an established biomarker for AD. In addition, we use hippocampal volume as a derived imaging-biomarker to enrich the learned manifold. Our classification results compare favorably to what has been reported in a recent meta-analysis using established neuroimaging methods on the same database.

摘要

我们提出了一个从代表个体间大脑差异的低维流形中提取生物标志物的框架。每个图像的流形坐标都捕获了关于结构形状和外观的信息,并且在存在表型的情况下,还捕获了关于主体临床状态的信息。我们的框架将主体元信息纳入流形学习步骤。除了性别和年龄之外,临床研究中通常还可以获得基因型或衍生生物标志物等信息,这可以为查询主体的分类提供信息。这种信息无论是离散的还是连续的,都被用作流形学习的附加输入,扩展了拉普拉斯特征映射目标函数,并丰富了从成对图像相似性得出的相似性度量。与从手动或自动分割等方法衍生的先验定义生物标志物不同,所提出的方法识别的生物标志物是数据驱动的。它们形成了成像和非成像测量的统一表示,为数据分析和可视化提供了自然的用途。我们使用 ADNI 研究中招募的阿尔茨海默病(AD)、轻度认知障碍(MCI)和健康对照者的方法来测试该方法对主体的分类。使用的非成像元数据是 ApoE 基因型,这是与 AD 相关的一个风险因素,以及 CSF 中 Aβ(1-42)的浓度,这是 AD 的一个已建立的生物标志物。此外,我们使用海马体积作为衍生的成像生物标志物来丰富学习的流形。我们的分类结果与最近使用相同数据库中的既定神经影像学方法进行的荟萃分析报告的结果相比具有优势。

相似文献

[1]
Nonlinear dimensionality reduction combining MR imaging with non-imaging information.

Med Image Anal. 2011-12-22

[2]
Manifold population modeling as a neuro-imaging biomarker: application to ADNI and ADNI-GO.

Neuroimage. 2014-3-21

[3]
A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease.

IEEE Trans Biomed Eng. 2017-1

[4]
Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.

Neuroimage. 2014-5-15

[5]
Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer's disease.

Med Image Comput Comput Assist Interv. 2013

[6]
Locally linear embedding (LLE) for MRI based Alzheimer's disease classification.

Neuroimage. 2013-12

[7]
Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.

Comput Biol Med. 2017-4-1

[8]
Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls.

Neuroimage. 2008-10-15

[9]
BrainPrint: identifying subjects by their brain.

Med Image Comput Comput Assist Interv. 2014

[10]
Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.

Comput Methods Programs Biomed. 2015-8-10

引用本文的文献

[1]
Diagnosis of Alzheimer's Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network.

Sensors (Basel). 2021-11-17

[2]
3D convolutional neural networks-based multiclass classification of Alzheimer's and Parkinson's diseases using PET and SPECT neuroimaging modalities.

Brain Inform. 2021-11-2

[3]
rest2vec: Vectorizing the resting-state functional connectome using graph embedding.

Neuroimage. 2021-2-1

[4]
End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification.

Mach Learn Med Imaging. 2018-9

[5]
Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks.

Hum Brain Mapp. 2020-12

[6]
Multi-modal latent space inducing ensemble SVM classifier for early dementia diagnosis with neuroimaging data.

Med Image Anal. 2020-2

[7]
Visualizing Alzheimer's disease progression in low dimensional manifolds.

Heliyon. 2019-8-2

[8]
Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis.

IEEE Trans Biomed Eng. 2018-9-12

[9]
The utility of a network-based clustering method for dimension reduction of imaging and non-imaging biomarkers predictive of Alzheimer's disease.

Sci Rep. 2018-2-12

[10]
Landmark-based deep multi-instance learning for brain disease diagnosis.

Med Image Anal. 2017-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索