Suppr超能文献

基于集成学习分类器和 3D 卷积神经网络的阿尔茨海默病诊断。

Diagnosis of Alzheimer's Disease with Ensemble Learning Classifier and 3D Convolutional Neural Network.

机构信息

Department of Computer Science and Engineering, Northeastern University, Shenyang 110819, China.

出版信息

Sensors (Basel). 2021 Nov 17;21(22):7634. doi: 10.3390/s21227634.

Abstract

Alzheimer's disease (AD), the most common type of dementia, is a progressive disease beginning with mild memory loss, possibly leading to loss of the ability to carry on a conversation and respond to environments. It can seriously affect a person's ability to carry out daily activities. Therefore, early diagnosis of AD is conducive to better treatment and avoiding further deterioration of the disease. Magnetic resonance imaging (MRI) has become the main tool for humans to study brain tissues. It can clearly reflect the internal structure of a brain and plays an important role in the diagnosis of Alzheimer's disease. MRI data is widely used for disease diagnosis. In this paper, based on MRI data, a method combining a 3D convolutional neural network and ensemble learning is proposed to improve the diagnosis accuracy. Then, a data denoising module is proposed to reduce boundary noise. The experimental results on ADNI dataset demonstrate that the model proposed in this paper improves the training speed of the neural network and achieves 95.2% accuracy in AD vs. NC (normal control) task and 77.8% accuracy in sMCI (stable mild cognitive impairment) vs. pMCI (progressive mild cognitive impairment) task in the diagnosis of Alzheimer's disease.

摘要

阿尔茨海默病(AD)是最常见的痴呆症类型,是一种进行性疾病,始于轻度记忆丧失,可能导致无法进行对话和对环境做出反应。它会严重影响一个人的日常生活活动能力。因此,早期诊断 AD 有利于更好地治疗和避免疾病的进一步恶化。磁共振成像(MRI)已成为人类研究脑组织的主要工具。它可以清楚地反映大脑的内部结构,在阿尔茨海默病的诊断中起着重要作用。MRI 数据广泛用于疾病诊断。在本文中,基于 MRI 数据,提出了一种结合 3D 卷积神经网络和集成学习的方法来提高诊断准确性。然后,提出了一种数据去噪模块来减少边界噪声。在 ADNI 数据集上的实验结果表明,本文提出的模型提高了神经网络的训练速度,在 AD 与 NC(正常对照)任务中的准确率达到 95.2%,在 sMCI(稳定轻度认知障碍)与 pMCI(进行性轻度认知障碍)任务中的准确率达到 77.8%,实现了对阿尔茨海默病的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c07/8623279/6760c4c10413/sensors-21-07634-g001.jpg

相似文献

2
Alzheimer's disease diagnosis framework from incomplete multimodal data using convolutional neural networks.
J Biomed Inform. 2021 Sep;121:103863. doi: 10.1016/j.jbi.2021.103863. Epub 2021 Jul 3.
3
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Neuroinformatics. 2018 Oct;16(3-4):295-308. doi: 10.1007/s12021-018-9370-4.
4
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
5
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
Brain Imaging Behav. 2021 Oct;15(5):2330-2339. doi: 10.1007/s11682-020-00427-y. Epub 2021 Jan 4.
6
A hybrid Convolutional and Recurrent Neural Network for Hippocampus Analysis in Alzheimer's Disease.
J Neurosci Methods. 2019 Jul 15;323:108-118. doi: 10.1016/j.jneumeth.2019.05.006. Epub 2019 May 25.
8
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
10
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.

引用本文的文献

1
AI-Based Classification of Mild Cognitive Impairment and Cognitively Normal Patients.
J Clin Med. 2025 Jul 25;14(15):5261. doi: 10.3390/jcm14155261.
2
An ensemble-based 3D residual network for the classification of Alzheimer's disease.
PLoS One. 2025 Jun 11;20(6):e0324520. doi: 10.1371/journal.pone.0324520. eCollection 2025.
4
Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion.
BioData Min. 2024 Nov 5;17(1):48. doi: 10.1186/s13040-024-00395-9.
5
Deep learning techniques for Alzheimer's disease detection in 3D imaging: A systematic review.
Health Sci Rep. 2024 Sep 18;7(9):e70025. doi: 10.1002/hsr2.70025. eCollection 2024 Sep.
6
A Deep Learning-Based Ensemble Method for Early Diagnosis of Alzheimer's Disease using MRI Images.
Neuroinformatics. 2024 Jan;22(1):89-105. doi: 10.1007/s12021-023-09646-2. Epub 2023 Dec 2.

本文引用的文献

1
3D shearlet-based descriptors combined with deep features for the classification of Alzheimer's disease based on MRI data.
Comput Biol Med. 2021 Nov;138:104879. doi: 10.1016/j.compbiomed.2021.104879. Epub 2021 Sep 22.
2
Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer's Disease Diagnosis.
Med Image Comput Comput Assist Interv. 2018;11072:455-463. doi: 10.1007/978-3-030-00931-1_52. Epub 2018 Sep 13.
5
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.
Comput Med Imaging Graph. 2019 Apr;73:1-10. doi: 10.1016/j.compmedimag.2019.01.005. Epub 2019 Jan 26.
6
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.
Neuroimage Clin. 2019;21:101645. doi: 10.1016/j.nicl.2018.101645. Epub 2018 Dec 18.
7
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.
IEEE Trans Pattern Anal Mach Intell. 2020 Apr;42(4):880-893. doi: 10.1109/TPAMI.2018.2889096. Epub 2018 Dec 21.
8
Hippocampus Analysis by Combination of 3-D DenseNet and Shapes for Alzheimer's Disease Diagnosis.
IEEE J Biomed Health Inform. 2019 Sep;23(5):2099-2107. doi: 10.1109/JBHI.2018.2882392. Epub 2018 Nov 20.
9
Early Diagnosis of Alzheimer's Disease Based on Resting-State Brain Networks and Deep Learning.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):244-257. doi: 10.1109/TCBB.2017.2776910. Epub 2017 Nov 23.
10
Classification of Alzheimer's Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images.
Front Neuroinform. 2018 Jun 19;12:35. doi: 10.3389/fninf.2018.00035. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验