文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于动态对比增强磁共振成像的非肿块增强型乳腺肿瘤的自动检测和分割。

Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

机构信息

Signal Theory and Communications Department, Universidad de Granada, Granada, Spain.

Department of Radiology, Memorial Sloan-Kettering Cancer Center, NewYork, USA.

出版信息

Contrast Media Mol Imaging. 2018 Oct 24;2018:5308517. doi: 10.1155/2018/5308517. eCollection 2018.


DOI:10.1155/2018/5308517
PMID:30647551
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6311739/
Abstract

Nonmass-enhancing (NME) lesions constitute a diagnostic challenge in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast. Computer-aided diagnosis (CAD) systems provide physicians with advanced tools for analysis, assessment, and evaluation that have a significant impact on the diagnostic performance. Here, we propose a new approach to address the challenge of NME lesion detection and segmentation, taking advantage of independent component analysis (ICA) to extract data-driven dynamic lesion characterizations. A set of independent sources was obtained from the DCE-MRI dataset of breast cancer patients, and the dynamic behavior of the different tissues was described by multiple dynamic curves, together with a set of eigenimages describing the scores for each voxel. A new test image is projected onto the independent source space using the unmixing matrix, and each voxel is classified by a support vector machine (SVM) that has already been trained with manually delineated data. A solution to the high false-positive rate problem is proposed by controlling the SVM hyperplane location, outperforming previously published approaches.

摘要

非肿块强化(NME)病变在乳腺动态对比增强磁共振成像(DCE-MRI)中构成诊断挑战。计算机辅助诊断(CAD)系统为医生提供了用于分析、评估和评价的先进工具,对诊断性能有重大影响。在这里,我们提出了一种新的方法来解决 NME 病变检测和分割的挑战,利用独立成分分析(ICA)提取数据驱动的动态病变特征。从乳腺癌患者的 DCE-MRI 数据集获得一组独立源,并用多组动态曲线描述不同组织的动态行为,并结合一组描述每个体素得分的本征图像。使用混合矩阵将新的测试图像投影到独立源空间上,然后使用已经用手动勾画数据进行训练的支持向量机(SVM)对每个体素进行分类。通过控制 SVM 超平面位置来解决高假阳性率问题,优于以前发表的方法。

相似文献

[1]
Automated Detection and Segmentation of Nonmass-Enhancing Breast Tumors with Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

Contrast Media Mol Imaging. 2018-10-24

[2]
A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions.

Med Image Anal. 2018-11-2

[3]
Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution.

Cancer Imaging. 2019-9-18

[4]
Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol.

Med Phys. 2017-7-18

[5]
Computer-aided diagnosis for dynamic contrast-enhanced breast MRI of mass-like lesions using a multiparametric model combining a selection of morphological, kinetic, and spatiotemporal features.

Med Phys. 2012-4

[6]
A Metric for Reducing False Positives in the Computer-Aided Detection of Breast Cancer from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Screening Examinations of High-Risk Women.

J Digit Imaging. 2016-2

[7]
Multilevel analysis of spatiotemporal association features for differentiation of tumor enhancement patterns in breast DCE-MRI.

Med Phys. 2010-8

[8]
A computer-aided diagnosis system for breast DCE-MRI at high spatiotemporal resolution.

Med Phys. 2016-1

[9]
Computer-aided diagnosis of prostate cancer using multi-parametric MRI: comparison between PUN and Tofts models.

Phys Med Biol. 2018-5-1

[10]
Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.

Artif Intell Med. 2013-3-30

引用本文的文献

[1]
Artificial Intelligence in Breast Imaging: Opportunities, Challenges, and Legal-Ethical Considerations.

Eurasian J Med. 2023-12

[2]
Artificial intelligence in breast imaging: Current situation and clinical challenges.

Exploration (Beijing). 2023-7-20

[3]
Automatic breast lesion segmentation in phase preserved DCE-MRIs.

Health Inf Sci Syst. 2022-5-20

[4]
Joint Dense Residual and Recurrent Attention Network for DCE-MRI Breast Tumor Segmentation.

Comput Intell Neurosci. 2022

[5]
Non-Mass Enhancements on DCE-MRI: Development and Validation of a Radiomics-Based Signature for Breast Cancer Diagnoses.

Front Oncol. 2021-9-22

[6]
Artificial Intelligence in Medical Imaging of the Breast.

Front Oncol. 2021-7-22

[7]
Limited role of DWI with apparent diffusion coefficient mapping in breast lesions presenting as non-mass enhancement on dynamic contrast-enhanced MRI.

Breast Cancer Res. 2019-12-4

本文引用的文献

[1]
Fully automated segmentation of whole breast using dynamic programming in dynamic contrast enhanced MR images.

Med Phys. 2017-5-4

[2]
Total variation based DCE-MRI decomposition by separating lesion from background for time-intensity curve estimation.

Med Phys. 2017-5-22

[3]
Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

Med Phys. 2017-2

[4]
Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support.

Int J Neural Syst. 2017-5

[5]
Image manifold revealing for breast lesion segmentation in DCE-MRI.

Biomed Mater Eng. 2015

[6]
A Metric for Reducing False Positives in the Computer-Aided Detection of Breast Cancer from Dynamic Contrast-Enhanced Magnetic Resonance Imaging Based Screening Examinations of High-Risk Women.

J Digit Imaging. 2016-2

[7]
Automated localization of breast cancer in DCE-MRI.

Med Image Anal. 2014-12-8

[8]
Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph.

J Magn Reson Imaging. 2014-4

[9]
Computerized breast lesions detection using kinetic and morphologic analysis for dynamic contrast-enhanced MRI.

Magn Reson Imaging. 2014-6

[10]
Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.

Magn Reson Imaging. 2014-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索