Suppr超能文献

探测阈值和最大舒适响度水平随人耳蜗植入使用者脉搏率变化的特征。

Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users.

机构信息

Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-5616, USA.

出版信息

Hear Res. 2012 Feb;284(1-2):25-32. doi: 10.1016/j.heares.2011.12.008. Epub 2012 Jan 4.

Abstract

The ability of an implanted ear to integrate multiple pulses, as measured by the slopes of detection threshold level (T level) versus pulse rate functions, may reflect cochlear health in the cochlea, as suggested by previous animal studies (Kang et al., 2010; Pfingst et al., 2011). In the current study, we examined the slopes of T level versus pulse rate functions in human subjects with cochlear implants. Typically, T levels decrease as a function of pulse rate, consistent with a multipulse integration mechanism. The magnitudes of the slopes of the T level versus pulse rate functions obtained from the human subjects were comparable to those reported in the animal studies. The slopes varied across stimulation sites, but did not change systematically along the tonotopic axis. This suggests that the slopes are dependent on local conditions near the individual stimulation sites. The characteristics of these functions were also similar to those found in animals in that the slopes for higher pulse rates were steeper than those for the lower pulse rates, consistent with a combined effect of multipulse integration and cumulative partial depolarization mechanisms at rates above 1000 pps. The maximum comfortable loudness level (C level) versus pulse rate functions were also examined to determine the effect of level on the slopes. Slopes of C-level functions were shallower than those for the T-level functions and were not correlated with those of the T-level functions, so the mechanisms underlying these two functions are probably not identical. The slopes of the T- or C-level functions were not dependent on stimulus-current level. Based on these results, we suggest that slopes of T level versus pulse rate functions might be a useful measure for estimating nerve survival in the cochlea in regions close to the stimulation sites.

摘要

植入耳整合多个脉冲的能力,如检测阈值水平 (T 水平) 与脉冲率函数的斜率所测量的那样,可能反映了耳蜗内的耳蜗健康,正如之前的动物研究所示 (Kang 等人,2010 年;Pfingst 等人,2011 年)。在当前的研究中,我们检查了植入人工耳蜗的人类受试者 T 水平与脉冲率函数的斜率。通常,T 水平随脉冲率降低,与多脉冲整合机制一致。从人类受试者获得的 T 水平与脉冲率函数的斜率的幅度与动物研究中报告的幅度相当。斜率随刺激部位的变化而变化,但沿音调轴没有系统地变化。这表明斜率取决于个体刺激部位附近的局部条件。这些功能的特征也与动物相似,即较高脉冲率的斜率比较低脉冲率的斜率更陡峭,这与高于 1000pps 时多脉冲整合和累积部分去极化机制的综合效应一致。还检查了最大舒适响度水平 (C 水平) 与脉冲率函数,以确定水平对斜率的影响。C 水平函数的斜率比 T 水平函数的斜率浅,并且与 T 水平函数的斜率不相关,因此这两个函数的机制可能不相同。T 或 C 水平函数的斜率不依赖于刺激电流水平。基于这些结果,我们建议 T 水平与脉冲率函数的斜率可能是一种有用的测量方法,可用于估计靠近刺激部位的耳蜗中神经的存活情况。

相似文献

2
Psychometric functions and temporal integration in electric hearing.
J Acoust Soc Am. 1997 Jun;101(6):3706-21. doi: 10.1121/1.418330.
3
Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
Ear Hear. 2014 Nov-Dec;35(6):641-51. doi: 10.1097/AUD.0000000000000058.
4
Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health.
J Acoust Soc Am. 2011 Dec;130(6):3954-68. doi: 10.1121/1.3651820.
5
On the Effect of High Stimulation Rates on Temporal Loudness Integration in Cochlear Implant Users.
Trends Hear. 2023 Jan-Dec;27:23312165231207229. doi: 10.1177/23312165231207229.
6
Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration.
Hear Res. 2022 Feb;414:108404. doi: 10.1016/j.heares.2021.108404. Epub 2021 Nov 27.
10
Psychophysical measures from electrical stimulation of the human cochlear nucleus.
Hear Res. 1990 Aug 1;47(1-2):159-68. doi: 10.1016/0378-5955(90)90173-m.

引用本文的文献

1
[Fitting of cochlear implant systems].
HNO. 2025 May;73(5):335-356. doi: 10.1007/s00106-025-01593-5. Epub 2025 Apr 9.
2
On the Effect of High Stimulation Rates on Temporal Loudness Integration in Cochlear Implant Users.
Trends Hear. 2023 Jan-Dec;27:23312165231207229. doi: 10.1177/23312165231207229.
3
Stimulation Rate and Voice Pitch Perception in Cochlear Implants.
J Assoc Res Otolaryngol. 2022 Oct;23(5):665-680. doi: 10.1007/s10162-022-00854-2. Epub 2022 Aug 2.
5
eABR THR Estimation Using High-Rate Multi-Pulse Stimulation in Cochlear Implant Users.
Front Neurosci. 2021 Jul 29;15:705189. doi: 10.3389/fnins.2021.705189. eCollection 2021.
6
The Role of Autosensitivity Control (ASC) in Cochlear Implant Recipients.
Audiol Res. 2021 Jan 21;11(1):22-30. doi: 10.3390/audiolres11010003.
7
Measuring implanted patient response to tone pips.
Biomed Eng Online. 2021 Jan 14;20(1):10. doi: 10.1186/s12938-020-00844-6.
8
Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users.
Hear Res. 2021 Mar 1;401:108163. doi: 10.1016/j.heares.2020.108163. Epub 2021 Jan 2.
9
Evaluating and Comparing Behavioural and Electrophysiological Estimates of Neural Health in Cochlear Implant Users.
J Assoc Res Otolaryngol. 2021 Feb;22(1):67-80. doi: 10.1007/s10162-020-00773-0. Epub 2020 Nov 4.
10
Electrophysiological assessment of temporal envelope processing in cochlear implant users.
Sci Rep. 2020 Sep 21;10(1):15406. doi: 10.1038/s41598-020-72235-9.

本文引用的文献

1
Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health.
J Acoust Soc Am. 2011 Dec;130(6):3954-68. doi: 10.1121/1.3651820.
2
Relationship between gap detection thresholds and loudness in cochlear-implant users.
Hear Res. 2011 May;275(1-2):130-8. doi: 10.1016/j.heares.2010.12.011. Epub 2010 Dec 17.
3
Effect of stimulation rate on cochlear implant users' phoneme, word and sentence recognition in quiet and in noise.
Audiol Neurootol. 2011;16(2):113-23. doi: 10.1159/000315115. Epub 2010 Jul 17.
4
Effects of hearing preservation on psychophysical responses to cochlear implant stimulation.
J Assoc Res Otolaryngol. 2010 Jun;11(2):245-65. doi: 10.1007/s10162-009-0194-7. Epub 2009 Nov 10.
5
Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users.
Hear Res. 2009 Apr;250(1-2):46-54. doi: 10.1016/j.heares.2009.01.009. Epub 2009 Feb 3.
7
Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
Ear Hear. 2007 Jun;28(3):381-93. doi: 10.1097/AUD.0b013e31804793ac.
9
Effects of stimulation rate, mode and level on modulation detection by cochlear implant users.
J Assoc Res Otolaryngol. 2005 Sep;6(3):269-79. doi: 10.1007/s10162-005-0007-6.
10
Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration.
Hear Res. 2005 Apr;202(1-2):55-62. doi: 10.1016/j.heares.2004.10.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验