Suppr超能文献

人工耳蜗各通道的检测阈值与响度感知之间的比较。

Comparisons between detection threshold and loudness perception for individual cochlear implant channels.

作者信息

Bierer Julie Arenberg, Nye Amberly D

机构信息

1Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington; and 2Ear Institute of Texas, San Antonio, Texas.

出版信息

Ear Hear. 2014 Nov-Dec;35(6):641-51. doi: 10.1097/AUD.0000000000000058.

Abstract

OBJECTIVE

The objective of this study was to examine how the level of current required for cochlear implant listeners to detect single-channel electrical pulse trains relates to loudness perception on the same channel. The working hypothesis was that channels with relatively high thresholds, when measured with a focused current pattern, interface poorly to the auditory nerve. For such channels, a smaller dynamic range between perceptual threshold and the most comfortable loudness would result, in part, from a greater sensitivity to changes in electrical field spread compared to low-threshold channels. The narrower range of comfortable listening levels may have important implications for speech perception.

DESIGN

Data were collected from eight, adult cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp.). The partial tripolar (pTP) electrode configuration, consisting of one intracochlear active electrode, two flanking electrodes carrying a fraction (σ) of the return current, and an extracochlear ground, was used for stimulation. Single-channel detection thresholds and most comfortable listening levels were acquired using the most focused pTP configuration possible (σ ≥ 0.8) to identify three channels for further testing-those with the highest, median, and lowest thresholds-for each subject. Threshold, equal-loudness contours (at 50% of the monopolar dynamic range), and loudness growth functions were measured for each of these three test channels using various pTP fractions.

RESULTS

For all test channels, thresholds increased as the electrode configuration became more focused. The rate of increase with the focusing parameter σ was greatest for the high-threshold channel compared to the median- and low-threshold channels. The 50% equal-loudness contours exhibited similar rates of increase in level across test channels and subjects. Additionally, test channels with the highest thresholds had the narrowest dynamic ranges (for σ ≥ 0.5) and steepest growth of loudness functions for all electrode configurations.

CONCLUSIONS

Together with previous studies using focused stimulation, the results suggest that auditory responses to electrical stimuli at both threshold and suprathreshold current levels are not uniform across the electrode array of individual cochlear implant listeners. Specifically, the steeper growth of loudness and thus smaller dynamic ranges observed for high-threshold channels are consistent with a degraded electrode-neuron interface, which could stem from lower numbers of functioning auditory neurons or a relatively large distance between the neurons and electrodes. These findings may have potential implications for how stimulation levels are set during the clinical mapping procedure, particularly for speech-processing strategies that use focused electrical fields.

摘要

目的

本研究的目的是探讨人工耳蜗使用者检测单通道电脉冲序列所需的电流水平与同一通道响度感知之间的关系。工作假设是,当用聚焦电流模式测量时,阈值相对较高的通道与听神经的接口较差。对于此类通道,与低阈值通道相比,感知阈值与最舒适响度之间的动态范围较小,部分原因是对电场扩散变化的敏感度更高。舒适聆听水平范围较窄可能对言语感知有重要影响。

设计

收集了8名植入HiRes90k人工耳蜗(先进生物电子公司)的成年人工耳蜗使用者的数据。刺激采用部分三极(pTP)电极配置,包括一个耳蜗内有源电极、两个承载部分返回电流(σ)的侧翼电极和一个耳蜗外接地电极。使用尽可能聚焦的pTP配置(σ≥0.8)获取单通道检测阈值和最舒适聆听水平,以确定每个受试者的三个通道进行进一步测试,即阈值最高、中位数和最低的通道。使用各种pTP分数测量这三个测试通道中每个通道的阈值、等响度轮廓(在单极动态范围的50%处)和响度增长函数。

结果

对于所有测试通道,随着电极配置变得更加聚焦,阈值增加。与中阈值和低阈值通道相比,高阈值通道的阈值随聚焦参数σ的增加速率最大。50%等响度轮廓在各测试通道和受试者中的电平增加速率相似。此外,对于所有电极配置,阈值最高的测试通道动态范围最窄(σ≥0.5),响度函数增长最陡峭。

结论

与之前使用聚焦刺激的研究一起,结果表明,在个体人工耳蜗使用者的电极阵列上,电刺激在阈值和阈上电流水平的听觉反应并不均匀。具体而言,高阈值通道观察到的响度增长更陡峭,因此动态范围更小,这与电极-神经元接口退化一致,这可能源于功能性听觉神经元数量较少或神经元与电极之间距离相对较大。这些发现可能对临床图谱程序中刺激水平的设置有潜在影响,特别是对于使用聚焦电场的言语处理策略。

相似文献

1
Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
Ear Hear. 2014 Nov-Dec;35(6):641-51. doi: 10.1097/AUD.0000000000000058.
5
Auditory cortical images of cochlear-implant stimuli: coding of stimulus channel and current level.
J Neurophysiol. 2002 Jan;87(1):493-507. doi: 10.1152/jn.00211.2001.
6
Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants.
Ear Hear. 2019 Jan/Feb;40(1):34-44. doi: 10.1097/AUD.0000000000000593.
7
Modulation frequency discrimination with single and multiple channels in cochlear implant users.
Hear Res. 2015 Jun;324:7-18. doi: 10.1016/j.heares.2015.02.007. Epub 2015 Mar 5.
8
A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.
Ear Hear. 2018 Nov/Dec;39(6):1136-1145. doi: 10.1097/AUD.0000000000000566.
10
Current steering with partial tripolar stimulation mode in cochlear implants.
J Assoc Res Otolaryngol. 2013 Apr;14(2):213-31. doi: 10.1007/s10162-012-0366-8. Epub 2012 Dec 19.

引用本文的文献

1
Speech performance in adults with cochlear implants using combined channel deactivation and dynamic current focusing.
Hear Res. 2025 Jul;463:109285. doi: 10.1016/j.heares.2025.109285. Epub 2025 May 3.
2
[Fitting of cochlear implant systems].
HNO. 2025 May;73(5):335-356. doi: 10.1007/s00106-025-01593-5. Epub 2025 Apr 9.
3
Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants.
Trends Hear. 2024 Jan-Dec;28:23312165241229880. doi: 10.1177/23312165241229880.
6
Current distribution of distributed all-polar cochlear implant stimulation mode measured in-situ.
PLoS One. 2022 Oct 31;17(10):e0275961. doi: 10.1371/journal.pone.0275961. eCollection 2022.
7
Single-Channel Focused Thresholds Relate to Vowel Identification in Pediatric and Adult Cochlear Implant Listeners.
Trends Hear. 2022 Jan-Dec;26:23312165221095364. doi: 10.1177/23312165221095364.
8
Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array.
Front Neurosci. 2021 Dec 8;15:751599. doi: 10.3389/fnins.2021.751599. eCollection 2021.
9
The Perception of Ramped Pulse Shapes in Cochlear Implant Users.
Trends Hear. 2021 Jan-Dec;25:23312165211061116. doi: 10.1177/23312165211061116.

本文引用的文献

1
Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding.
J Assoc Res Otolaryngol. 2014 Apr;15(2):293-304. doi: 10.1007/s10162-013-0437-5. Epub 2014 Jan 30.
3
Image-guidance enables new methods for customizing cochlear implant stimulation strategies.
IEEE Trans Neural Syst Rehabil Eng. 2013 Sep;21(5):820-9. doi: 10.1109/TNSRE.2013.2253333. Epub 2013 Mar 19.
4
Improving speech perception in noise with current focusing in cochlear implant users.
Hear Res. 2013 May;299:29-36. doi: 10.1016/j.heares.2013.02.004. Epub 2013 Mar 1.
5
Across-site patterns of modulation detection: relation to speech recognition.
J Acoust Soc Am. 2012 May;131(5):4030-41. doi: 10.1121/1.3701879.
7
8
Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
Hear Res. 2012 Jan;283(1-2):45-58. doi: 10.1016/j.heares.2011.11.005. Epub 2011 Nov 22.
9
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
Ear Hear. 2011 Nov-Dec;32(6):679-89. doi: 10.1097/AUD.0b013e31821a47df.
10
Cochlear infrastructure for electrical hearing.
Hear Res. 2011 Nov;281(1-2):65-73. doi: 10.1016/j.heares.2011.05.002. Epub 2011 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验