Department of Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Heart Rhythm. 2012 Jun;9(6):953-60. doi: 10.1016/j.hrthm.2012.01.010. Epub 2012 Jan 11.
Ranolazine (Ran) is known to inhibit multiple targets, including the late Na(+)current, the rapid delayed rectifying K(+)current, the L-type Ca(2+)current, and fatty acid metabolism. Functionally, Ran suppresses early afterdepolarization (EADs) and torsades de pointes (TdP) in drug-induced long QT type 2 (LQT2) presumably by decreasing intracellular Na(+) and Ca(2+)overload. However, simulations of EADs in LQT2 failed to predict their suppression by Ran.
To elucidate the mechanism(s) whereby Ran alters cardiac action potentials (APs) and cytosolic Ca(2+)transients and suppresses EADs and TdP in LQT2.
The known effects of Ran were included in simulations (Shannon and Mahajan models) of rabbit ventricular APs and Ca(2+)transients in control and LQT2 models and compared with experimental optical mapping data from Langendorff rabbit hearts treated with E4031 (0.5 μM) to block the rapid delayed rectifying K(+)current. Direct effects of Ran on cardiac ryanodine receptors (RyR2) were investigated in single channels and changes in Ca(2+)-dependent high-affinity ryanodine binding.
Ran (10 μM) alone prolonged action potential durations (206 ± 4.6 to 240 ± 7.8 ms; P <0.05); E4031 prolonged action potential durations (204 ± 6 to 546 ± 35 ms; P <0.05) and elicited EADs and TdP that were suppressed by Ran (10 μM; n = 7 of 7 hearts). Simulations (Shannon but not Mahajan model) closely reproduced experimental data except for EAD suppression by Ran. Ran reduced open probability (P(o)) of RyR2 (half maximal inhibitory concentration = 10 ± 3 μM; n = 7) in bilayers and shifted half maximal effective concentration for Ca(2+)-dependent ryanodine binding from 0.42 ± 0.02 to 0.64 ± 0.02 μM with 30 μM Ran.
Ran reduces P(o) of RyR2, desensitizes Ca(2+)-dependent RyR2 activation, and inhibits Ca(i) oscillations, which represents a novel mechanism for its suppression of EADs and TdP.
雷诺嗪(Ran)已知可抑制多种靶点,包括晚期 Na(+)电流、快速延迟整流钾电流、L 型 Ca(2+)电流和脂肪酸代谢。从功能上讲,雷诺嗪通过降低细胞内[Na(+)](i)和 Ca(2+)超载,抑制药物诱导的长 QT 型 2 型(LQT2)中的早期后除极(EAD)和尖端扭转型室性心动过速(TdP)。然而,对 LQT2 中 EAD 的模拟未能预测雷诺嗪对其的抑制作用。
阐明雷诺嗪改变心脏动作电位(APs)和胞浆 Ca(2+)瞬变以及抑制 LQT2 中的 EAD 和 TdP 的机制。
在控制和 LQT2 模型的兔心室 APs 和 Ca(2+)瞬变的 Shannon 和 Mahajan 模型中包含已知的雷诺嗪作用,并将其与用 E4031(0.5 μM)处理的 Langendorff 兔心的实验光学映射数据进行比较,以阻断快速延迟整流钾电流。在单个通道中研究了雷诺嗪对心脏 Ryanodine 受体(RyR2)的直接作用以及 Ca(2+)依赖性高亲和力 Ryanodine 结合的变化。
单独使用雷诺嗪(10 μM)可延长动作电位持续时间(206 ± 4.6 至 240 ± 7.8 ms;P <0.05);E4031 延长动作电位持续时间(204 ± 6 至 546 ± 35 ms;P <0.05)并诱发 EAD 和 TdP,而雷诺嗪(10 μM;n = 7 个心脏中的 7 个)抑制了这些反应。模拟(Shannon 但不是 Mahajan 模型)除了雷诺嗪抑制 EAD 之外,还非常接近地重现了实验数据。雷诺嗪(10 ± 3 μM;n = 7)在双层膜中降低了 RyR2 的开放概率(P(o)),并将 Ca(2+)依赖性 Ryanodine 结合的半最大有效浓度从 0.42 ± 0.02 至 0.64 ± 0.02 μM 改变。有 30 μM 雷诺嗪。
雷诺嗪降低 RyR2 的 P(o),使 Ca(2+)依赖性 RyR2 激活脱敏,并抑制 Ca(i)振荡,这代表了其抑制 EAD 和 TdP 的新机制。