Suppr超能文献

通过实验设计研究影响不锈钢中金属浸出物的生物治疗制剂因素。

Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments.

机构信息

Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., St Louis, Missouri 63017, USA.

出版信息

AAPS PharmSciTech. 2012 Mar;13(1):284-94. doi: 10.1208/s12249-011-9747-2. Epub 2012 Jan 13.

Abstract

Trace amounts of metals are inevitably present in biotherapeutic products. They can arise from various sources. The impact of common formulation factors such as protein concentration, antioxidant, metal chelator concentration and type, surfactant, pH, and contact time with stainless steel on metal leachables was investigated by a design of experiments approach. Three major metal leachables, iron, chromium, and nickel were monitored by inductively coupled plasma-mass spectrometry. It was observed that among all the tested factors, contact time, metal chelator concentration, and protein concentration were statistically significant factors with higher temperature resulting in higher levels of leached metals. Within a pH range of 5.5-6.5, solution pH played a minor role for chromium leaching at 25°C. No statistically significant difference was observed due to type of chelator, presence of antioxidant, or surfactant. In order to optimize a biotherapeutic formulation to achieve a target drug product shelf life with acceptable quality, each formulation component must be evaluated for its impact.

摘要

痕量金属不可避免地存在于生物治疗产品中。它们可能来自各种来源。通过实验设计方法研究了常见制剂因素(如蛋白质浓度、抗氧化剂、金属螯合剂浓度和类型、表面活性剂、pH 值和与不锈钢接触时间)对可浸出金属的影响。采用电感耦合等离子体质谱法监测了三种主要的可浸出金属:铁、铬和镍。结果表明,在所测试的因素中,接触时间、金属螯合剂浓度和蛋白质浓度是具有统计学意义的重要因素,较高的温度导致更高水平的浸出金属。在 25°C 时,在 5.5-6.5 的 pH 范围内,溶液 pH 值对铬的浸出作用影响较小。由于螯合剂的类型、抗氧化剂的存在或表面活性剂的存在,没有观察到统计学上的显著差异。为了优化生物治疗制剂,以达到可接受质量的目标药物产品保质期,必须评估每个制剂成分对其的影响。

相似文献

1
Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments.
AAPS PharmSciTech. 2012 Mar;13(1):284-94. doi: 10.1208/s12249-011-9747-2. Epub 2012 Jan 13.
2
Biologics formulation factors affecting metal leachables from stainless steel.
AAPS PharmSciTech. 2011 Mar;12(1):411-21. doi: 10.1208/s12249-011-9592-3. Epub 2011 Mar 1.
3
Impact of Magnetic Stirring on Stainless Steel Integrity: Effect on Biopharmaceutical Processing.
J Pharm Sci. 2017 Nov;106(11):3280-3286. doi: 10.1016/j.xphs.2017.07.008. Epub 2017 Jul 20.
4
Metals release from stainless steel knives in simulated food contact.
Food Addit Contam Part B Surveill. 2022 Sep;15(3):203-211. doi: 10.1080/19393210.2022.2075473. Epub 2022 Jun 6.
6
Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots.
Contact Dermatitis. 2017 Jan;76(1):40-48. doi: 10.1111/cod.12692. Epub 2016 Nov 1.
7
Survey of six metal contaminants and impurities and eleven metals and alloy components released from stainless-steel sheets on the Chinese market.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2021 Dec;38(12):2091-2101. doi: 10.1080/19440049.2021.1964700. Epub 2021 Aug 20.
8
Metal release from arch bars used in maxillofacial surgery. An in vitro study.
Acta Odontol Scand. 1992 Apr;50(2):83-9. doi: 10.3109/00016359209012750.
9
Stainless steel cookware as a significant source of nickel, chromium, and iron.
Arch Environ Contam Toxicol. 1992 Aug;23(2):211-5. doi: 10.1007/BF00212277.
10
Metal release from heat-treated orthodontic archwires.
Acta Odontol Scand. 1987 Dec;45(6):409-14. doi: 10.3109/00016358709096365.

引用本文的文献

1
Stability of Protein Pharmaceuticals: Recent Advances.
Pharm Res. 2024 Jul;41(7):1301-1367. doi: 10.1007/s11095-024-03726-x. Epub 2024 Jun 27.
2
Oxidation of polysorbates - An underestimated degradation pathway?
Int J Pharm X. 2023 Jul 27;6:100202. doi: 10.1016/j.ijpx.2023.100202. eCollection 2023 Dec 15.
6
Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies.
Pharm Res. 2021 Aug;38(8):1387-1395. doi: 10.1007/s11095-021-03089-7. Epub 2021 Aug 11.
7
Rapid global characterization of immunoglobulin G1 following oxidative stress.
MAbs. 2019 Aug/Sep;11(6):1089-1100. doi: 10.1080/19420862.2019.1625676. Epub 2019 Jul 4.
8
Differentiating the Effects of Oxidative Stress Tests on Biopharmaceuticals.
Pharm Res. 2019 May 17;36(7):103. doi: 10.1007/s11095-019-2627-2.

本文引用的文献

1
Biologics formulation factors affecting metal leachables from stainless steel.
AAPS PharmSciTech. 2011 Mar;12(1):411-21. doi: 10.1208/s12249-011-9592-3. Epub 2011 Mar 1.
3
4
Precipitation of a monoclonal antibody by soluble tungsten.
J Pharm Sci. 2009 Sep;98(9):3290-301. doi: 10.1002/jps.21707.
5
Antibody structure, instability, and formulation.
J Pharm Sci. 2007 Jan;96(1):1-26. doi: 10.1002/jps.20727.
6
Formulation and delivery issues for monoclonal antibody therapeutics.
Adv Drug Deliv Rev. 2006 Aug 7;58(5-6):686-706. doi: 10.1016/j.addr.2006.03.011. Epub 2006 May 22.
7
The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components.
J Mater Sci Mater Med. 2003 Jan;14(1):69-77. doi: 10.1023/a:1021505621388.
8
Stabilization of pharmaceuticals to oxidative degradation.
Pharm Dev Technol. 2002 Jan;7(1):1-32. doi: 10.1081/pdt-120002237.
10
The formulation of biopharmaceutical products.
Pharm Sci Technol Today. 2000 Apr;3(4):129-137. doi: 10.1016/s1461-5347(00)00248-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验