National Engineering Laboratory for Video Technology, Peking University, Beijing, China.
IEEE Trans Image Process. 2012 May;21(5):2838-52. doi: 10.1109/TIP.2012.2183139. Epub 2012 Jan 9.
In this paper, a group-sensitive multiple kernel learning (GS-MKL) method is proposed for object recognition to accommodate the intraclass diversity and the interclass correlation. By introducing the "group" between the object category and individual images as an intermediate representation, GS-MKL attempts to learn group-sensitive multikernel combinations together with the associated classifier. For each object category, the image corpus from the same category is partitioned into groups. Images with similar appearance are partitioned into the same group, which corresponds to the subcategory of the object category. Accordingly, intraclass diversity can be represented by the set of groups from the same category but with diverse appearances; interclass correlation can be represented by the correlation between groups from different categories. GS-MKL provides a tractable solution to adapt multikernel combination to local data distribution and to seek a tradeoff between capturing the diversity and keeping the invariance for each object category. Different from the simple hybrid grouping strategy that solves sample grouping and GS-MKL training independently, two sample grouping strategies are proposed to integrate sample grouping and GS-MKL training. The first one is a looping hybrid grouping method, where a global kernel clustering method and GS-MKL interact with each other by sharing group-sensitive multikernel combination. The second one is a dynamic divisive grouping method, where a hierarchical kernel-based grouping process interacts with GS-MKL. Experimental results show that performance of GS-MKL does not significantly vary with different grouping strategies, but the looping hybrid grouping method produces slightly better results. On four challenging data sets, our proposed method has achieved encouraging performance comparable to the state-of-the-art and outperformed several existing MKL methods.
本文提出了一种群组敏感多核学习(GS-MKL)方法,用于对象识别,以适应类内多样性和类间相关性。通过在对象类别和单个图像之间引入“群组”作为中间表示,GS-MKL 试图一起学习群组敏感多核组合以及相关的分类器。对于每个对象类别,来自同一类别的图像集合被划分为多个组。具有相似外观的图像被划分到同一个组中,这对应于对象类别的子类别。相应地,类内多样性可以由来自同一类别的但具有不同外观的组集合来表示;类间相关性可以由来自不同类别的组之间的相关性来表示。GS-MKL 提供了一种可行的解决方案,自适应地调整多核组合以适应局部数据分布,并在捕捉多样性和保持每个对象类别的不变性之间寻求平衡。与独立解决样本分组和 GS-MKL 训练的简单混合分组策略不同,本文提出了两种样本分组策略来集成样本分组和 GS-MKL 训练。第一种是循环混合分组方法,其中全局核聚类方法和 GS-MKL 通过共享群组敏感多核组合相互作用。第二种是动态划分分组方法,其中基于核的层次分组过程与 GS-MKL 相互作用。实验结果表明,GS-MKL 的性能不会因不同的分组策略而有显著变化,但循环混合分组方法的效果略好一些。在四个具有挑战性的数据集上,我们的方法取得了令人鼓舞的性能,与最先进的方法相当,并且优于一些现有的 MKL 方法。