Suppr超能文献

基于数据驱动的层次结构核的多尺度部分目标识别。

Data-driven hierarchical structure kernel for multiscale part-based object recognition.

出版信息

IEEE Trans Image Process. 2014 Apr;23(4):1765-78. doi: 10.1109/TIP.2014.2307480.

Abstract

Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches.

摘要

在计算机视觉中,检测图像和视频中的通用目标类别是一个基本问题。然而,它面临着来自类内和类间多样性的挑战,以及由于视角、姿势、变形等引起的失真。为了解决物体的变化,本文构建了一个结构核,并提出了一种多尺度基于部件的模型,该模型结合了核的判别能力。结构核将从三个方面度量基于部件的物体的相似性:1)全局相似性项,用于度量相关物体的全局视觉外观的相似性;2)部件相似性项,用于度量有区别的部件的视觉外观的相似性;3)空间相似性项,用于度量部件的空间布局的相似性。本质上,结构核中的部件变形在水平位移、垂直位移和尺度差异的多尺度空间中受到惩罚。部件相似性用不同的权重进行组合,这些权重通过归一化随机梯度上升算法进行优化,以最大化类内相似度和最小化类间相似度。此外,结构核的参数在训练过程中是根据数据的分布以更具判别力的方式进行学习的。具有灵活的部件大小和位移,可以更好地抵抗类内变化、姿势和视角的影响。理论分析和实验评估表明,所提出的基于结构核的多尺度基于部件的表示模型具有准确和鲁棒的性能,优于最先进的目标分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991e/5330370/95aac5608668/nihms848370f1.jpg

相似文献

2
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL.使用结构核的半监督目标识别
Proc Int Conf Image Proc. 2012:2157-2160. doi: 10.1109/icip.2012.6467320.
3
Group-sensitive multiple kernel learning for object recognition.面向目标识别的群组敏感多核学习。
IEEE Trans Image Process. 2012 May;21(5):2838-52. doi: 10.1109/TIP.2012.2183139. Epub 2012 Jan 9.
4
Learning the Conformal Transformation Kernel for Image Recognition.学习图像识别的保形变换核。
IEEE Trans Neural Netw Learn Syst. 2017 Jan;28(1):149-163. doi: 10.1109/TNNLS.2015.2504538. Epub 2015 Dec 17.
5
Structured Kernel Dictionary Learning With Correlation Constraint for Object Recognition.基于相关约束的结构化核字典学习的目标识别
IEEE Trans Image Process. 2017 Sep;26(9):4578-4590. doi: 10.1109/TIP.2017.2718187. Epub 2017 Jun 21.
7
Detecting Densely Distributed Graph Patterns for Fine-Grained Image Categorization.检测密集分布的图模式进行细粒度图像分类。
IEEE Trans Image Process. 2016 Feb;25(2):553-65. doi: 10.1109/TIP.2015.2502147. Epub 2015 Nov 19.
9
Context-dependent kernels for object classification.基于上下文的目标分类核函数。
IEEE Trans Pattern Anal Mach Intell. 2011 Apr;33(4):699-708. doi: 10.1109/TPAMI.2010.198.
10
Transferring visual prior for online object tracking.迁移视觉先验进行在线目标跟踪。
IEEE Trans Image Process. 2012 Jul;21(7):3296-305. doi: 10.1109/TIP.2012.2190085. Epub 2012 Apr 5.

本文引用的文献

1
Learning with hierarchical-deep models.分层深度学习模型的学习。
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1958-71. doi: 10.1109/TPAMI.2012.269.
4
Object detection with DoG scale-space: a multiple kernel learning approach.基于 DoG 尺度空间的目标检测:一种多核学习方法。
IEEE Trans Image Process. 2012 Aug;21(8):3744-56. doi: 10.1109/TIP.2012.2192130. Epub 2012 Apr 3.
5
Scale-invariant features and polar descriptors in omnidirectional imaging.全向成像中的尺度不变特征和极坐标描述符。
IEEE Trans Image Process. 2012 May;21(5):2412-23. doi: 10.1109/TIP.2012.2185937. Epub 2012 Jan 27.
6
Group-sensitive multiple kernel learning for object recognition.面向目标识别的群组敏感多核学习。
IEEE Trans Image Process. 2012 May;21(5):2838-52. doi: 10.1109/TIP.2012.2183139. Epub 2012 Jan 9.
7
Vehicle detection in aerial surveillance using dynamic Bayesian networks.利用动态贝叶斯网络进行空中监测中的车辆检测。
IEEE Trans Image Process. 2012 Apr;21(4):2152-9. doi: 10.1109/TIP.2011.2172798. Epub 2011 Oct 19.
9
Context-dependent kernels for object classification.基于上下文的目标分类核函数。
IEEE Trans Pattern Anal Mach Intell. 2011 Apr;33(4):699-708. doi: 10.1109/TPAMI.2010.198.
10
Multiple kernel learning for dimensionality reduction.多核学习的维度约简。
IEEE Trans Pattern Anal Mach Intell. 2011 Jun;33(6):1147-60. doi: 10.1109/TPAMI.2010.183.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验