Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia.
J Comput Aided Mol Des. 2012 Mar;26(3):279-87. doi: 10.1007/s10822-012-9543-4. Epub 2012 Jan 17.
Query expansion is the process of reformulating an original query to improve retrieval performance in information retrieval systems. Relevance feedback is one of the most useful query modification techniques in information retrieval systems. In this paper, we introduce query expansion into ligand-based virtual screening (LBVS) using the relevance feedback technique. In this approach, a few high-ranking molecules of unknown activity are filtered from the outputs of a Bayesian inference network based on a single ligand molecule to form a set of ligand molecules. This set of ligand molecules is used to form a new ligand molecule. Simulated virtual screening experiments with the MDL Drug Data Report and maximum unbiased validation data sets show that the use of ligand expansion provides a very simple way of improving the LBVS, especially when the active molecules being sought have a high degree of structural heterogeneity. However, the effectiveness of the ligand expansion is slightly less when structurally-homogeneous sets of actives are being sought.
查询扩展是指重新表述原始查询以提高信息检索系统中检索性能的过程。相关性反馈是信息检索系统中最有用的查询修改技术之一。在本文中,我们使用相关性反馈技术将查询扩展引入基于配体的虚拟筛选(LBVS)中。在这种方法中,从基于单个配体分子的贝叶斯推理网络的输出中过滤出几个未知活性的高排名分子,形成一组配体分子。使用这个配体分子集来形成一个新的配体分子。使用 MDL 药物数据报告和最大无偏验证数据集进行的模拟虚拟筛选实验表明,使用配体扩展提供了一种非常简单的方法来改进 LBVS,特别是当所寻找的活性分子具有高度的结构异质性时。然而,当寻找结构均一的活性分子集时,配体扩展的有效性略低。