Suppr超能文献

一种高通量定量的体外剪接分析方法可鉴定剪接体催化的抑制剂。

A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis.

机构信息

Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.

出版信息

Mol Cell Biol. 2012 Apr;32(7):1271-83. doi: 10.1128/MCB.05788-11. Epub 2012 Jan 17.

Abstract

Despite intensive research, there are very few reagents with which to modulate and dissect the mRNA splicing pathway. Here, we describe a novel approach to identify such tools, based on detection of the exon junction complex (EJC), a unique molecular signature that splicing leaves on mRNAs. We developed a high-throughput, splicing-dependent EJC immunoprecipitation (EJIPT) assay to quantitate mRNAs spliced from biotin-tagged pre-mRNAs in cell extracts, using antibodies to EJC components Y14 and eukaryotic translation initiation factor 4aIII (eIF4AIII). Deploying EJIPT we performed high-throughput screening (HTS) in conjunction with secondary assays to identify splicing inhibitors. We describe the identification of 1,4-naphthoquinones and 1,4-heterocyclic quinones with known anticancer activity as potent and selective splicing inhibitors. Interestingly, and unlike previously described small molecules, most of which target early steps, our inhibitors represented by the benzothiazole-4,7-dione, BN82685, block the second of two trans-esterification reactions in splicing, preventing the release of intron lariat and ligation of exons. We show that BN82685 inhibits activated spliceosomes' elaborate structural rearrangements that are required for second-step catalysis, allowing definition of spliceosomes stalled in midcatalysis. EJIPT provides a platform for characterization and discovery of splicing and EJC modulators.

摘要

尽管进行了深入的研究,但能够调节和剖析 mRNA 剪接途径的试剂却非常少。在这里,我们描述了一种基于检测外显子结合复合物 (EJC) 的新型方法来识别此类工具,EJC 是剪接在 mRNA 上留下的独特分子特征。我们开发了一种高通量、依赖剪接的 EJC 免疫沉淀 (EJIPT) 测定法,用于定量细胞提取物中生物素标记的前体 mRNA 剪接的 mRNA,使用针对 EJC 成分 Y14 和真核翻译起始因子 4aIII (eIF4AIII) 的抗体。我们使用 EJIPT 进行了高通量筛选 (HTS),并结合二级测定法来识别剪接抑制剂。我们描述了 1,4-萘醌和 1,4-杂环醌作为具有已知抗癌活性的有效且选择性剪接抑制剂的鉴定。有趣的是,与之前描述的大多数靶向早期步骤的小分子不同,我们的抑制剂代表物苯并噻唑-4,7-二酮 BN82685 阻断剪接中两个转酯反应中的第二个,从而阻止内含子套索的释放和外显子的连接。我们表明 BN82685 抑制了剪接体进行第二步催化所需的复杂结构重排,从而可以定义处于中间催化阶段的剪接体。EJIPT 为鉴定和发现剪接和 EJC 调节剂提供了一个平台。

相似文献

1
A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis.
Mol Cell Biol. 2012 Apr;32(7):1271-83. doi: 10.1128/MCB.05788-11. Epub 2012 Jan 17.
2
A high-throughput splicing assay identifies new classes of inhibitors of human and yeast spliceosomes.
J Biomol Screen. 2013 Oct;18(9):1110-20. doi: 10.1177/1087057113493117. Epub 2013 Jun 14.
3
CWC22-dependent pre-mRNA splicing and eIF4A3 binding enables global deposition of exon junction complexes.
Nucleic Acids Res. 2015 May 19;43(9):4687-700. doi: 10.1093/nar/gkv320. Epub 2015 Apr 13.
4
Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21313-8. doi: 10.1073/pnas.1219725110. Epub 2012 Dec 10.
5
A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex.
J Biol Chem. 2004 Feb 20;279(8):7009-13. doi: 10.1074/jbc.M307692200. Epub 2003 Nov 18.
6
Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly.
Nat Struct Mol Biol. 2012 Oct;19(10):983-90. doi: 10.1038/nsmb.2380. Epub 2012 Sep 9.
7
Introns play an essential role in splicing-dependent formation of the exon junction complex.
Genes Dev. 2007 Aug 15;21(16):1993-8. doi: 10.1101/gad.1557907. Epub 2007 Aug 3.
10
The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes.
J Biol Chem. 2015 Nov 13;290(46):27524-31. doi: 10.1074/jbc.M115.673210. Epub 2015 Sep 25.

引用本文的文献

1
The transrepression and transactivation roles of CtBPs in the pathogenesis of different diseases.
J Mol Med (Berl). 2021 Oct;99(10):1335-1347. doi: 10.1007/s00109-021-02107-w. Epub 2021 Jul 1.
3
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays.
Molecules. 2021 Apr 14;26(8):2263. doi: 10.3390/molecules26082263.
4
A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex.
Cell Chem Biol. 2021 Aug 19;28(8):1145-1157.e6. doi: 10.1016/j.chembiol.2021.02.007. Epub 2021 Mar 8.
5
Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer.
Cell. 2021 Jan 21;184(2):384-403.e21. doi: 10.1016/j.cell.2020.12.031. Epub 2021 Jan 14.
6
Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly.
Nat Commun. 2020 Nov 6;11(1):5621. doi: 10.1038/s41467-020-19514-1.
8
More than a messenger: Alternative splicing as a therapeutic target.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194395. doi: 10.1016/j.bbagrm.2019.06.006. Epub 2019 Jul 2.
9
The Role of CtBP1 in Oncogenic Processes and Its Potential as a Therapeutic Target.
Mol Cancer Ther. 2017 Jun;16(6):981-990. doi: 10.1158/1535-7163.MCT-16-0592.

本文引用的文献

1
Spliceosome structure and function.
Cold Spring Harb Perspect Biol. 2011 Jul 1;3(7):a003707. doi: 10.1101/cshperspect.a003707.
3
Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing.
Mol Cell Biol. 2010 Apr;30(7):1718-28. doi: 10.1128/MCB.01301-09. Epub 2010 Feb 1.
4
Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation.
Nat Struct Mol Biol. 2010 Feb;17(2):216-21. doi: 10.1038/nsmb.1718. Epub 2010 Jan 31.
5
The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo.
Nucleic Acids Res. 2010 Mar;38(5):1610-22. doi: 10.1093/nar/gkp1155. Epub 2009 Dec 9.
6
Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells.
Mol Cancer Ther. 2009 Aug;8(8):2308-18. doi: 10.1158/1535-7163.MCT-09-0051. Epub 2009 Aug 11.
7
RNA and disease.
Cell. 2009 Feb 20;136(4):777-93. doi: 10.1016/j.cell.2009.02.011.
8
The spliceosome: design principles of a dynamic RNP machine.
Cell. 2009 Feb 20;136(4):701-18. doi: 10.1016/j.cell.2009.02.009.
10
Alternative splicing and disease.
Biochim Biophys Acta. 2009 Jan;1792(1):14-26. doi: 10.1016/j.bbadis.2008.09.017. Epub 2008 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验