Suppr超能文献

一种高通量剪接检测方法鉴定出人类和酵母剪接体抑制剂的新类别。

A high-throughput splicing assay identifies new classes of inhibitors of human and yeast spliceosomes.

作者信息

Effenberger Kerstin A, Perriman Rhonda J, Bray Walter M, Lokey R Scott, Ares Manuel, Jurica Melissa S

机构信息

1Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA.

出版信息

J Biomol Screen. 2013 Oct;18(9):1110-20. doi: 10.1177/1087057113493117. Epub 2013 Jun 14.

Abstract

The spliceosome is the macromolecular machine responsible for pre-mRNA splicing, an essential step in eukaryotic gene expression. During splicing, myriad subunits join and leave the spliceosome as it works on the pre-mRNA substrate. Strikingly, there are very few small molecules known to interact with the spliceosome. Splicing inhibitors are needed to capture transient spliceosome conformations and probe important functional components. Such compounds may also have chemotherapeutic applications, as links between splicing and cancer are increasingly uncovered. To identify new splicing inhibitors, we developed a high-throughput assay for in vitro splicing using a reverse transcription followed by quantitative PCR readout. In a pilot screen of 3080 compounds, we identified three small molecules that inhibit splicing in HeLa extract by interfering with different stages of human spliceosome assembly. Two of the compounds similarly affect spliceosomes in yeast extracts, suggesting selective targeting of conserved components. By examining related molecules, we identified chemical features required for the activity of two of the splicing inhibitors. In addition to verifying our assay procedure and paving the way to larger screens, these studies establish new compounds as chemical probes for investigating the splicing machinery.

摘要

剪接体是负责前体mRNA剪接的大分子机器,这是真核基因表达中的一个关键步骤。在剪接过程中,众多亚基在前体mRNA底物上起作用时会加入和离开剪接体。令人惊讶的是,已知与剪接体相互作用的小分子非常少。需要剪接抑制剂来捕获剪接体的瞬时构象并探测重要的功能成分。这类化合物也可能具有化疗应用,因为剪接与癌症之间的联系越来越多地被发现。为了鉴定新的剪接抑制剂,我们开发了一种高通量体外剪接检测方法,该方法采用逆转录随后进行定量PCR读数。在对3080种化合物的初步筛选中,我们鉴定出三种小分子,它们通过干扰人类剪接体组装的不同阶段来抑制HeLa提取物中的剪接。其中两种化合物对酵母提取物中的剪接体有类似影响,表明它们选择性地靶向保守成分。通过研究相关分子,我们确定了两种剪接抑制剂活性所需的化学特征。除了验证我们的检测程序并为更大规模的筛选铺平道路外,这些研究还将新化合物确立为研究剪接机制的化学探针。

相似文献

1
A high-throughput splicing assay identifies new classes of inhibitors of human and yeast spliceosomes.
J Biomol Screen. 2013 Oct;18(9):1110-20. doi: 10.1177/1087057113493117. Epub 2013 Jun 14.
2
Small molecule inhibitors of yeast pre-mRNA splicing.
ACS Chem Biol. 2009 Sep 18;4(9):759-68. doi: 10.1021/cb900090z.
3
The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes.
J Biol Chem. 2015 Nov 13;290(46):27524-31. doi: 10.1074/jbc.M115.673210. Epub 2015 Sep 25.
4
A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis.
Mol Cell Biol. 2012 Apr;32(7):1271-83. doi: 10.1128/MCB.05788-11. Epub 2012 Jan 17.
5
Identification of small molecule inhibitors of pre-mRNA splicing.
J Biol Chem. 2014 Dec 12;289(50):34683-98. doi: 10.1074/jbc.M114.590976. Epub 2014 Oct 3.
6
Blocking late stages of splicing quickly limits pre-spliceosome assembly in vivo.
RNA Biol. 2019 Dec;16(12):1775-1784. doi: 10.1080/15476286.2019.1657788. Epub 2019 Sep 4.
7
Chemical Inhibition of Pre-mRNA Splicing in Living Saccharomyces cerevisiae.
Cell Chem Biol. 2019 Mar 21;26(3):443-448.e3. doi: 10.1016/j.chembiol.2018.11.008. Epub 2019 Jan 10.

引用本文的文献

2
Broad variation in response of individual introns to splicing inhibitors in a humanized yeast strain.
bioRxiv. 2023 Nov 13:2023.10.05.560965. doi: 10.1101/2023.10.05.560965.
3
Targeting splicing factors for cancer therapy.
RNA. 2023 Apr;29(4):506-515. doi: 10.1261/rna.079585.123. Epub 2023 Jan 25.
4
Integration of TE Induces Cancer Specific Alternative Splicing Events.
Int J Mol Sci. 2022 Sep 18;23(18):10918. doi: 10.3390/ijms231810918.
6
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays.
Molecules. 2021 Apr 14;26(8):2263. doi: 10.3390/molecules26082263.
7
A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex.
Cell Chem Biol. 2021 Aug 19;28(8):1145-1157.e6. doi: 10.1016/j.chembiol.2021.02.007. Epub 2021 Mar 8.
8
Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly.
Nat Commun. 2020 Nov 6;11(1):5621. doi: 10.1038/s41467-020-19514-1.
9
More than a messenger: Alternative splicing as a therapeutic target.
Biochim Biophys Acta Gene Regul Mech. 2019 Nov-Dec;1862(11-12):194395. doi: 10.1016/j.bbagrm.2019.06.006. Epub 2019 Jul 2.
10
Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction.
RNA. 2019 Aug;25(8):1020-1037. doi: 10.1261/rna.070649.119. Epub 2019 May 20.

本文引用的文献

1
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia.
Cell. 2013 Feb 14;152(4):714-26. doi: 10.1016/j.cell.2013.01.019.
2
The development and application of small molecule modulators of SF3b as therapeutic agents for cancer.
Drug Discov Today. 2013 Jan;18(1-2):43-9. doi: 10.1016/j.drudis.2012.07.013. Epub 2012 Aug 3.
4
A quantitative high-throughput in vitro splicing assay identifies inhibitors of spliceosome catalysis.
Mol Cell Biol. 2012 Apr;32(7):1271-83. doi: 10.1128/MCB.05788-11. Epub 2012 Jan 17.
6
Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.
N Engl J Med. 2011 Oct 13;365(15):1384-95. doi: 10.1056/NEJMoa1103283. Epub 2011 Sep 26.
7
Frequent pathway mutations of splicing machinery in myelodysplasia.
Nature. 2011 Sep 11;478(7367):64-9. doi: 10.1038/nature10496.
8
The spliceosome: design principles of a dynamic RNP machine.
Cell. 2009 Feb 20;136(4):701-18. doi: 10.1016/j.cell.2009.02.009.
9
The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing.
J Biol Chem. 2008 Nov 28;283(48):33147-54. doi: 10.1074/jbc.M805556200. Epub 2008 Sep 30.
10
Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA.
Nat Chem Biol. 2007 Sep;3(9):576-83. doi: 10.1038/nchembio.2007.18. Epub 2007 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验