Suppr超能文献

中风患者在日常生活活动任务中的手臂运动分析:一项初步研究。

Arm motion analysis of stroke patients in activities of daily living tasks: a preliminary study.

作者信息

Kim Kyung, Park Dae-Sung, Ko Byung-Woo, Lee Jeongsu, Yang Seung-Nam, Kim Jongbae, Song Won-Kyung

机构信息

Research Institute, National Rehabilitation Center, Korea.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1287-91. doi: 10.1109/IEMBS.2011.6090303.

Abstract

Analyzing activities of daily living (ADL) for the development of practical upper limb rehabilitation robots is challenging in stroke patients. Basic ADL tasks using an upper limb are defined based on clinical assessment tools. The motions of 8 healthy participants and 8 stroke patients were recorded during defined ADL tasks, and then analyzed with respect to completion time, linearity of motion, and range of motion of the joints. Completion time and motion trajectories were significantly different between stroke subjects and healthy participants. For tasks involving the transfer of an object from a table to the user's mouth, wrist radial-ulnar deviation motions should be taken into account while designing robots for gross movements via elbow and shoulder joints. Our findings can be extended to the design of trajectories of rehabilitation robots as well as of simplified robots.

摘要

对于中风患者而言,分析日常生活活动(ADL)以开发实用的上肢康复机器人具有挑战性。使用上肢的基本ADL任务是根据临床评估工具来定义的。在规定的ADL任务期间记录了8名健康参与者和8名中风患者的动作,然后从完成时间、动作线性度和关节活动范围方面进行了分析。中风受试者与健康参与者之间的完成时间和运动轨迹存在显著差异。对于涉及将物体从桌子转移到使用者口中的任务,在设计通过肘部和肩关节进行大动作的机器人时,应考虑手腕的桡尺偏斜动作。我们的研究结果可扩展到康复机器人轨迹的设计以及简化机器人的设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验