Suppr超能文献

康复治疗中末端执行器机器人辅助的人类手臂关节重建算法。

Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.

机构信息

Miguel Hernández University of Elche, Av. Universidad w/n, Ed. Innova, Elche, 03202, Spain.

Universidad de Cadiz, Avenida de la Universidad n 10, Puerto Real, 11519, Spain.

出版信息

J Neuroeng Rehabil. 2018 Feb 20;15(1):10. doi: 10.1186/s12984-018-0348-0.

Abstract

BACKGROUND

End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm.

METHODS

The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients.

RESULTS

The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients.

CONCLUSIONS

The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.

摘要

背景

末端执行器机器人常用于上肢机器人辅助神经康复治疗,患者的手可以很容易地连接到手夹板上。然而,它们无法在治疗过程中估计和控制上肢的运动学配置。然而,运动范围(ROM)与临床评估量表一起为治疗师提供了全面的评估。我们的目标是提出一种强大而稳定的运动学重建算法,仅使用放置在上臂上的加速度计准确测量上肢关节。

方法

所提出的算法基于增广雅可比逆作为算法(Papaleo 等人,医学生物工程计算 53(9):815-28,2015)。然而,通过计算手臂运动期间加速度计测量的旋转来估计肘关节的位置,使算法更能抵抗肩部运动。此外,我们提出了一种计算开始积分方法所需的上肢初始配置的方法、一种手动测量上臂和前臂长度的协议以及一种肩部位置估计方法。使用光电系统测试了所提出算法的准确性,同时健康受试者在上肢运动中握住 7 自由度(DoF)机器人的末端执行器。此外,在“PUPArm”平面机器人辅助的神经康复治疗期间研究了以前和提出的算法,该机器人有三名脑卒中患者。

结果

所提出的算法报告了肘关节位置的均方根误差(RMSE)为 2.13cm,腕关节位置的 RMSE 为 1.89cm,相关性很高。这些误差导致与通过光电系统获得的真实上肢相比,所有关节的 RMSE 约为 3.5 度(七个关节的平均值),相关性很高。然后,通过两种算法对上肢关节的估计表明,当肩部运动出现时,前一种算法由于脑卒中患者不可避免的躯干补偿而出现不稳定性。

结论

所提出的算法能够在末端执行器机器人辅助的神经康复治疗中准确估计人体上肢关节。此外,无需光电系统,仅使用附着在上臂的一个加速度计,即可在临床环境中遵循所实现的协议。因此,可以完美确定 ROM,并成为全面评估的客观评估参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ab/5819179/31deb688f8bd/12984_2018_348_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验