Logesparan Lojini, Casson Alexander J, Rodriguez-Villegas Esther
Department of Electrical and Electronic Engineering, Imperial College London, UK.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1439-42. doi: 10.1109/IEMBS.2011.6090356.
Signal normalization is an essential part of patient independent algorithms, for example to correct for variations in signal amplitude from different parts of the body, prior to applying a fixed threshold for event detection. Multiple methods for providing the required normalization are available. This paper presents a systematic investigation into the effects of five different methods using epileptic seizure detection from the EEG as an illustration case. It is found that, whilst normalization is essential, four of the considered methods actually decrease the ability to detect seizures, counteracting the algorithm aim. For optimal detection performance the effects of the signal normalization illustrated here should be incorporated into future algorithm designs.
信号归一化是独立于患者的算法的重要组成部分,例如在应用固定阈值进行事件检测之前,校正来自身体不同部位的信号幅度变化。有多种提供所需归一化的方法。本文以脑电图癫痫发作检测为例,对五种不同方法的效果进行了系统研究。结果发现,虽然归一化至关重要,但所考虑的四种方法实际上降低了癫痫发作的检测能力,与算法目标背道而驰。为了获得最佳检测性能,此处所示信号归一化的效果应纳入未来的算法设计中。