Suppr超能文献

对患者独立脑电图痫性发作进行预测的深度学习分类器的校准。

Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting.

机构信息

Department of General Psychology, University of Padova, 35131 Padova, Italy.

Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy.

出版信息

Sensors (Basel). 2024 Apr 30;24(9):2863. doi: 10.3390/s24092863.

Abstract

The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.

摘要

最近的科学文献中充斥着利用机器学习自动分析脑电图 (EEG) 信号的癫痫发作预测方法的提案。深度学习算法似乎取得了特别显著的性能,表明用于癫痫预测的临床设备的实施可能即将实现。然而,大多数研究通过随机交叉验证技术评估自动预测方法的稳健性,而临床应用需要基于患者独立测试的更严格验证。在这项研究中,我们表明,通过实施简单的校准管道,可以在一定程度上对从未在训练阶段见过的独立患者进行自动癫痫发作预测,该校准管道可以微调深度学习模型,即使是针对从新患者记录的单个癫痫事件。我们使用包含来自大量癫痫患者的 EEG 信号的两个数据集来评估我们的校准程序,证明深度学习方法的预测精度可以平均提高 20%以上,并且所有独立患者的性能都系统地提高。我们进一步表明,我们的校准程序最适合深度学习模型,但也可以成功应用于基于工程化信号特征的机器学习算法。尽管我们的方法仍然需要每个患者至少一个癫痫事件来校准预测模型,但我们得出结论,关注现实的验证方法可以更可靠地比较不同的用于癫痫预测的机器学习方法,从而实现可用于日常医疗保健实践的强大有效的预测系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验