Gong Jen J, Wong Kin Foon Kevin, Cotten Joseph F, Solt Ken, Brown Emery N
Harvard College.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1721-4. doi: 10.1109/IEMBS.2011.6090493.
Understanding the physiological impact of drug treatments on patients is important in assessing their performance and determining possible side effects. While this effect might be best determined in individual subjects, conventional methods assess treatment performance by averaging a physiological measure of interest before and after drug administration for n subjects. Summarizing large numbers of time-series observations in two means for each subject in this way results in significant information loss. Treatment effect can instead be analyzed in individual subjects. Because serial dependence of observations from the same animal must then be considered, methods that assume independence of observations, such as the t-test and z-test, cannot be used. We address this issue in the case of respiratory data collected from anesthetized rats that were injected with a dopamine agonist. In order to accurately assess treatment effect in time-series data, we begin by formulating a method of conditional likelihood maximization to estimate the parameters of a first-order autoregressive (AR) process. We show that treatment effect of a dopamine agonist can be determined while incorporating serial effect into the analysis. In addition, while maximum likelihood estimators of a large sample with independent observations may converge to an asymptotically normal distribution, this result of large sample theory may not hold when observations are serially dependent. In this case, a parametric bootstrap comparison can be used to approximate an appropriate measure of uncertainty.
了解药物治疗对患者的生理影响对于评估其疗效和确定可能的副作用至关重要。虽然这种影响可能在个体受试者中最易确定,但传统方法是通过对(n)名受试者给药前后的感兴趣的生理指标求平均值来评估治疗效果。以这种方式为每个受试者将大量时间序列观察结果汇总为两个平均值会导致大量信息丢失。相反,可以在个体受试者中分析治疗效果。由于必须考虑来自同一只动物的观察结果的序列依赖性,因此不能使用假设观察结果独立的方法(如(t)检验和(z)检验)。我们在从注射了多巴胺激动剂的麻醉大鼠收集的呼吸数据的情况下解决这个问题。为了准确评估时间序列数据中的治疗效果,我们首先制定一种条件似然最大化方法来估计一阶自回归(AR)过程的参数。我们表明,在将序列效应纳入分析的同时,可以确定多巴胺激动剂的治疗效果。此外,虽然具有独立观察结果的大样本的最大似然估计量可能会收敛到渐近正态分布,但当观察结果存在序列依赖性时,大样本理论的这个结果可能不成立。在这种情况下,可以使用参数自助法比较来近似适当的不确定性度量。