Suppr超能文献

在呼吸动力学研究中校正序列依赖性。

Correcting for serial dependence in studies of respiratory dynamics.

作者信息

Gong Jen J, Wong Kin Foon Kevin, Cotten Joseph F, Solt Ken, Brown Emery N

机构信息

Harvard College.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1721-4. doi: 10.1109/IEMBS.2011.6090493.

Abstract

Understanding the physiological impact of drug treatments on patients is important in assessing their performance and determining possible side effects. While this effect might be best determined in individual subjects, conventional methods assess treatment performance by averaging a physiological measure of interest before and after drug administration for n subjects. Summarizing large numbers of time-series observations in two means for each subject in this way results in significant information loss. Treatment effect can instead be analyzed in individual subjects. Because serial dependence of observations from the same animal must then be considered, methods that assume independence of observations, such as the t-test and z-test, cannot be used. We address this issue in the case of respiratory data collected from anesthetized rats that were injected with a dopamine agonist. In order to accurately assess treatment effect in time-series data, we begin by formulating a method of conditional likelihood maximization to estimate the parameters of a first-order autoregressive (AR) process. We show that treatment effect of a dopamine agonist can be determined while incorporating serial effect into the analysis. In addition, while maximum likelihood estimators of a large sample with independent observations may converge to an asymptotically normal distribution, this result of large sample theory may not hold when observations are serially dependent. In this case, a parametric bootstrap comparison can be used to approximate an appropriate measure of uncertainty.

摘要

了解药物治疗对患者的生理影响对于评估其疗效和确定可能的副作用至关重要。虽然这种影响可能在个体受试者中最易确定,但传统方法是通过对(n)名受试者给药前后的感兴趣的生理指标求平均值来评估治疗效果。以这种方式为每个受试者将大量时间序列观察结果汇总为两个平均值会导致大量信息丢失。相反,可以在个体受试者中分析治疗效果。由于必须考虑来自同一只动物的观察结果的序列依赖性,因此不能使用假设观察结果独立的方法(如(t)检验和(z)检验)。我们在从注射了多巴胺激动剂的麻醉大鼠收集的呼吸数据的情况下解决这个问题。为了准确评估时间序列数据中的治疗效果,我们首先制定一种条件似然最大化方法来估计一阶自回归(AR)过程的参数。我们表明,在将序列效应纳入分析的同时,可以确定多巴胺激动剂的治疗效果。此外,虽然具有独立观察结果的大样本的最大似然估计量可能会收敛到渐近正态分布,但当观察结果存在序列依赖性时,大样本理论的这个结果可能不成立。在这种情况下,可以使用参数自助法比较来近似适当的不确定性度量。

相似文献

1
Correcting for serial dependence in studies of respiratory dynamics.在呼吸动力学研究中校正序列依赖性。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1721-4. doi: 10.1109/IEMBS.2011.6090493.
8
Nonstationary noise estimation in functional MRI.功能磁共振成像中的非平稳噪声估计
Neuroimage. 2005 Dec;28(4):890-903. doi: 10.1016/j.neuroimage.2005.06.043. Epub 2005 Aug 29.

引用本文的文献

本文引用的文献

1
State-space models for optical imaging.
Stat Med. 2007 Sep 20;26(21):3862-74. doi: 10.1002/sim.2933.
2
Nonlinear analysis of heart rate and respiratory dynamics.心率与呼吸动力学的非线性分析。
IEEE Eng Med Biol Mag. 1997 Jan-Feb;16(1):31-9. doi: 10.1109/51.566150.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验