Suppr超能文献

可植入式射频识别传感器:无线供电与通信。

Implantable radio frequency identification sensors: wireless power and communication.

作者信息

Hutchens Chriswell, Rennaker Robert L, Venkataraman Srinivasan, Ahmed Rehan, Liao Ran, Ibrahim Tamer

机构信息

School of Electrical and Computer Engineering,Oklahoma State University, Stillwater, Oklahoma 74078,

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2886-92. doi: 10.1109/IEMBS.2011.6090796.

Abstract

There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

摘要

开发完全可植入的无线供电神经接口存在重大技术挑战。这些挑战包括向植入设备无线传输足够的电力,以确保其在无需更换的情况下可靠运行数十年;将组织发热降至最低;以及具备足够可靠的通信带宽。克服这些挑战对于开发用于治疗癫痫、尿失禁、中风和脊髓损伤等疾病的植入式闭环系统至关重要。我们讨论了一种射频识别传感器(RFIDS)系统的无线供电、通信和控制的开发情况,该系统针对在-2 dBm时为700 mV、30至40 μA负载实现的目标功率范围。

相似文献

1
Implantable radio frequency identification sensors: wireless power and communication.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2886-92. doi: 10.1109/IEMBS.2011.6090796.
4
Development of data communication system with ultra high frequency radio wave for implantable artificial hearts.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4110-5. doi: 10.1109/IEMBS.2009.5334021.
5
Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
IEEE Trans Biomed Circuits Syst. 2013 Apr;7(2):186-95. doi: 10.1109/TBCAS.2013.2255595.
7
Adaptive Transcutaneous Power Transfer to Implantable Devices: A State of the Art Review.
Sensors (Basel). 2016 Mar 18;16(3):393. doi: 10.3390/s16030393.
8
An investigation on power loss of an out-to-in body wireless radio frequency link.
Technol Health Care. 2021;29(6):1089-1098. doi: 10.3233/THC-181485.
9
A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3841-4. doi: 10.1109/IEMBS.2009.5332564.
10
What Ultrasound Can and Cannot Do in Implantable Medical Device Communications.
IEEE Rev Biomed Eng. 2023;16:357-370. doi: 10.1109/RBME.2021.3080087. Epub 2023 Jan 5.

引用本文的文献

1
Implanted miniaturized antenna for brain computer interface applications: analysis and design.
PLoS One. 2014 Jul 31;9(7):e103945. doi: 10.1371/journal.pone.0103945. eCollection 2014.
2
Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.
PLoS One. 2013 Nov 6;8(11):e77759. doi: 10.1371/journal.pone.0077759. eCollection 2013.

本文引用的文献

1
Electromagnetic power absorption and temperature changes due to brain machine interface operation.
Ann Biomed Eng. 2007 May;35(5):825-34. doi: 10.1007/s10439-007-9264-3. Epub 2007 Mar 2.
2
SARs for pocket-mounted mobile telephones at 835 and 1900 MHz.
Phys Med Biol. 2002 Dec 7;47(23):4301-13. doi: 10.1088/0031-9155/47/23/314.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验