Suppr超能文献

用于远程慢性心力衰竭患者监测系统的缺失数据插补

Missing data imputation for remote CHF patient monitoring systems.

作者信息

Suh Myung-kyung, Woodbridge Jonathan, Lan Mars, Bui Alex, Evangelista Lorraine S, Sarrafzadeh Majid

机构信息

Computer Science Department, University of California, Los Angeles, CA 90095, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3184-7. doi: 10.1109/IEMBS.2011.6090867.

Abstract

Congestive heart failure (CHF) is a leading cause of death in the United States. WANDA is a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with CHF. The first pilot study of WANDA showed the system's effectiveness for patients with CHF. However, WANDA experienced a considerable amount of missing data due to system misuse, nonuse, and failure. Missing data is highly undesirable as automated alarms may fail to notify healthcare professionals of potentially dangerous patient conditions. In this study, we exploit machine learning techniques including projection adjustment by contribution estimation regression (PACE), Bayesian methods, and voting feature interval (VFI) algorithms to predict both non-binomial and binomial data. The experimental results show that the aforementioned algorithms are superior to other methods with high accuracy and recall. This approach also shows an improved ability to predict missing data when training on entire populations, as opposed to training unique classifiers for each individual.

摘要

充血性心力衰竭(CHF)是美国主要的死亡原因之一。WANDA是一个无线健康项目,它利用传感器技术和无线通信来监测CHF患者的健康状况。WANDA的首次试点研究表明了该系统对CHF患者的有效性。然而,由于系统滥用、未使用和故障,WANDA出现了大量缺失数据。缺失数据是非常不可取的,因为自动警报可能无法将潜在的危险患者状况通知医疗保健专业人员。在本研究中,我们利用机器学习技术,包括贡献估计回归投影调整(PACE)、贝叶斯方法和投票特征区间(VFI)算法来预测非二项式和二项式数据。实验结果表明,上述算法在准确性和召回率方面优于其他方法。与为每个个体训练独特的分类器相比,这种方法在对整个人群进行训练时,预测缺失数据的能力也有所提高。

相似文献

2
A remote patient monitoring system for congestive heart failure.充血性心力衰竭远程患者监护系统。
J Med Syst. 2011 Oct;35(5):1165-79. doi: 10.1007/s10916-011-9733-y. Epub 2011 May 25.
3
Dynamic Task Optimization in Remote Diabetes Monitoring Systems.远程糖尿病监测系统中的动态任务优化
Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. 2012 Sep;2012:3-11. doi: 10.1109/HISB.2012.10. Epub 2012 Dec 3.
5
Dynamic self-adaptive remote health monitoring system for diabetics.糖尿病患者动态自适应远程健康监测系统
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2223-6. doi: 10.1109/EMBC.2012.6346404.
8
Congestive Heart Failure home monitoring pilot study in urban Denver.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3150-3. doi: 10.1109/IEMBS.2011.6090859.

引用本文的文献

1
Dynamic Task Optimization in Remote Diabetes Monitoring Systems.远程糖尿病监测系统中的动态任务优化
Proc IEEE Int Conf Healthc Inform Imaging Syst Biol. 2012 Sep;2012:3-11. doi: 10.1109/HISB.2012.10. Epub 2012 Dec 3.
2
Dynamic self-adaptive remote health monitoring system for diabetics.糖尿病患者动态自适应远程健康监测系统
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2223-6. doi: 10.1109/EMBC.2012.6346404.

本文引用的文献

1
Connecting the circle from home to heart-failure disease management.连接从家庭到心力衰竭疾病管理的循环。
N Engl J Med. 2010 Dec 9;363(24):2364-7. doi: 10.1056/NEJMe1011769. Epub 2010 Nov 16.
2
Telemonitoring in patients with heart failure.心力衰竭患者的远程监测。
N Engl J Med. 2010 Dec 9;363(24):2301-9. doi: 10.1056/NEJMoa1010029. Epub 2010 Nov 16.
6
Rotation forest: A new classifier ensemble method.旋转森林:一种新的分类器集成方法。
IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1619-30. doi: 10.1109/TPAMI.2006.211.
7
Psychometric testing of the heart failure somatic awareness scale.心力衰竭躯体感知量表的心理测量学测试。
J Cardiovasc Nurs. 2006 Mar-Apr;21(2):95-102. doi: 10.1097/00005082-200603000-00004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验