Suh Myung-kyung, Woodbridge Jonathan, Lan Mars, Bui Alex, Evangelista Lorraine S, Sarrafzadeh Majid
Computer Science Department, University of California, Los Angeles, CA 90095, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3184-7. doi: 10.1109/IEMBS.2011.6090867.
Congestive heart failure (CHF) is a leading cause of death in the United States. WANDA is a wireless health project that leverages sensor technology and wireless communication to monitor the health status of patients with CHF. The first pilot study of WANDA showed the system's effectiveness for patients with CHF. However, WANDA experienced a considerable amount of missing data due to system misuse, nonuse, and failure. Missing data is highly undesirable as automated alarms may fail to notify healthcare professionals of potentially dangerous patient conditions. In this study, we exploit machine learning techniques including projection adjustment by contribution estimation regression (PACE), Bayesian methods, and voting feature interval (VFI) algorithms to predict both non-binomial and binomial data. The experimental results show that the aforementioned algorithms are superior to other methods with high accuracy and recall. This approach also shows an improved ability to predict missing data when training on entire populations, as opposed to training unique classifiers for each individual.
充血性心力衰竭(CHF)是美国主要的死亡原因之一。WANDA是一个无线健康项目,它利用传感器技术和无线通信来监测CHF患者的健康状况。WANDA的首次试点研究表明了该系统对CHF患者的有效性。然而,由于系统滥用、未使用和故障,WANDA出现了大量缺失数据。缺失数据是非常不可取的,因为自动警报可能无法将潜在的危险患者状况通知医疗保健专业人员。在本研究中,我们利用机器学习技术,包括贡献估计回归投影调整(PACE)、贝叶斯方法和投票特征区间(VFI)算法来预测非二项式和二项式数据。实验结果表明,上述算法在准确性和召回率方面优于其他方法。与为每个个体训练独特的分类器相比,这种方法在对整个人群进行训练时,预测缺失数据的能力也有所提高。