Suppr超能文献

使用主动态模式对神经元集群之间的相互作用进行动态非线性建模。

Dynamic nonlinear modeling of interactions between neuronal ensembles using principal dynamic modes.

作者信息

Marmarelis V Z, Shin D C, Song D, Hampson R E, Deadwyler S A, Berger T W

机构信息

Department of Biomedical Engineering and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3334-7. doi: 10.1109/IEMBS.2011.6090904.

Abstract

We present a novel methodology for modeling the interactions between neuronal ensembles that utilizes the concept of Principal Dynamic Modes (PDM) and their associated nonlinear functions (ANF). This new approach seeks to reduce the complexity of the multi-input/multi-output (MIMO) model of the interactions between neuronal ensembles--an issue of critical practical importance in scaling up the MIMO models to incorporate hundreds (or even thousands) of input-output neurons. Global PDMs were extracted from the data using estimated first-order and second-order kernels and singular value decomposition (SVD). These global PDMs represent an efficient "coordinate system" for the representation of the MIMO model. The ANFs of the PDMs are estimated from the histograms of the combinations of PDM output values that lead to output spikes. For initial testing and validation of this approach, we applied it to a set of data collected at the pre-frontal cortex of a non-human primate during a behavioral task (Delayed Match-to-Sample). Recorded spike trains from Layer-2 neurons were viewed as the "inputs" and from Layer-5 neurons as the outputs. Model prediction performance was evaluated by means of computed Receiver Operating Characteristic (ROC) curves. The results indicate that this methodology may greatly reduce the complexity of the MIMO model without significant degradation of performance.

摘要

我们提出了一种用于对神经元集合之间的相互作用进行建模的新方法,该方法利用主动态模式(PDM)的概念及其相关的非线性函数(ANF)。这种新方法旨在降低神经元集合之间相互作用的多输入/多输出(MIMO)模型的复杂性——这是在扩大MIMO模型以纳入数百(甚至数千)个输入-输出神经元时一个至关重要的实际问题。使用估计的一阶和二阶核以及奇异值分解(SVD)从数据中提取全局PDM。这些全局PDM代表了一种用于表示MIMO模型的有效“坐标系”。PDM的ANF是根据导致输出尖峰的PDM输出值组合的直方图估计的。为了对该方法进行初步测试和验证,我们将其应用于在一项行为任务(延迟匹配样本)期间从一只非人类灵长类动物的前额叶皮层收集的一组数据。来自第2层神经元的记录的尖峰序列被视为“输入”,来自第5层神经元的尖峰序列被视为输出。通过计算接收器操作特征(ROC)曲线来评估模型预测性能。结果表明,该方法可以在不显著降低性能的情况下大大降低MIMO模型的复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验