Marmarelis V Z, Shin D C, Song D, Hampson R E, Deadwyler S A, Berger T W
Department of Biomedical Engineering and the Biomedical Simulations Resource (BMSR), University of Southern California, Los Angeles, CA, 90089, USA,
J Comput Neurosci. 2014 Jun;36(3):321-37. doi: 10.1007/s10827-013-0475-3. Epub 2013 Aug 9.
Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed "input-output channels of communication" corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.
使用主动态模式(PDM)对多输入多输出(MIMO)神经元系统进行非线性建模,为分析神经元群体之间的功能连接提供了一种新方法。本文介绍了基于PDM的建模方法以及来自非人类灵长类动物前额叶皮质实际多单元记录的初步结果。我们使用PDM来分析在执行延迟匹配样本任务的灵长类动物中,前额叶皮质从第2层(输入)到第5层(输出)的尖峰序列活动的动态转换。基于PDM的模型降低了表示涉及大量神经元的大规模神经MIMO系统的复杂性,并且还为所获得模型的生物学/生理学解释的改进提供了前景。对该系统中神经元连接性的PDM分析揭示了与神经节律的特定频段相对应的“输入-输出通信通道”,这些通道量化了这些频率特异性PDM在各种不同任务中的相对重要性。我们发现,在延迟匹配样本任务期间的行为表现(正确与错误结果)与前额叶皮质中频率特异性PDM的差异激活有关。