Suppr超能文献

通过电子鼻和气相色谱/质谱分析对吸烟者和非吸烟者的呼吸进行鉴别和表征。

Discrimination and characterization of breath from smokers and non-smokers via electronic nose and GC/MS analysis.

作者信息

Witt Katharina, Reulecke Sina, Voss Andreas

机构信息

Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3664-7. doi: 10.1109/IEMBS.2011.6090618.

Abstract

The objective of this study was to prove the general applicability of an electronic nose for analyzing exhaled breath considering the dependency on smoking. At first, odor compounds from spices (n=6) were detected via the electronic nose and further characterized and classified with gas chromatography/ mass spectrometry to demonstrate the principle ability of the electronic nose. Then, the exhaled breath from smokers and non-smokers were analyzed to prove the influence of smoking on breath analyses with the electronic nose. The exhaled breath was sampled from 11 smokers and 11 non-smokers in a special sampling bag with the mounted sensor chip of the electronic nose. Additionally, solid phase micro-extraction (SPME) technique was established for detection of the specific chemical compounds with gas chromatography and mass spectrometry (GC/MS). For analyses of the sensor signals the principle component analysis (PCA) was applied and the groups were differentiated by linear discriminant function analysis. In accordance to the discrimination between the different spices and between smokers and non-smokers the PCA analysis leads to an optimum accuracy of 100%. The results of this study show that an electronic nose has the ability to detect different changes of odor components and provides separation of smoking side effects in smelling different diseases.

摘要

本研究的目的是证明电子鼻在考虑吸烟依赖性的情况下对分析呼出气的普遍适用性。首先,通过电子鼻检测来自香料(n = 6)的气味化合物,并进一步用气相色谱/质谱进行表征和分类,以证明电子鼻的基本能力。然后,分析吸烟者和非吸烟者的呼出气,以证明吸烟对用电子鼻进行呼吸分析的影响。在装有电子鼻传感器芯片的特殊采样袋中,从11名吸烟者和11名非吸烟者采集呼出气。此外,建立了固相微萃取(SPME)技术,用于通过气相色谱和质谱(GC/MS)检测特定化合物。对于传感器信号分析,应用主成分分析(PCA),并通过线性判别函数分析区分各组。根据不同香料之间以及吸烟者和非吸烟者之间的区分,PCA分析的最佳准确率为100%。本研究结果表明,电子鼻有能力检测气味成分的不同变化,并在嗅闻不同疾病时分离出吸烟的副作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验