Zhang Dan, Xu Honglai, Wu Wei, Gao Shangkai, Hong Bo
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4564-7. doi: 10.1109/IEMBS.2011.6091130.
The N200 speller is a novel brain-computer interface (BCI) paradigm utilizing the overt attention effects on motion onset visual evoked potentials (mVEP). However, the asynchronous performance of the N200 BCI has not been fully explored. In this paper, a novel algorithm was proposed, integrating the spatial profile of the visual speller to provide a more precise description of the mVEP responses. Most importantly, only control state data were used in the algorithm to train a classifier which can detect the non-control state effectively. Using offline recorded data, the asynchronous performance of the proposed algorithm was shown to be significantly better than that of a similar algorithm without using the spatial information. The proposed algorithm can be used for developing a practical, asynchronous N200 BCI system.
N200 拼写器是一种新型脑机接口(BCI)范式,它利用了对运动起始视觉诱发电位(mVEP)的明显注意效应。然而,N200 BCI 的异步性能尚未得到充分探索。本文提出了一种新算法,该算法整合了视觉拼写器的空间特征,以更精确地描述 mVEP 响应。最重要的是,该算法仅使用控制状态数据来训练一个能够有效检测非控制状态的分类器。使用离线记录的数据,结果表明所提算法的异步性能明显优于未使用空间信息的类似算法。所提算法可用于开发实用的异步 N200 BCI 系统。