Nizami Shermeen, Green James Robert, McGregor Carolyn
Carleton University, Ottawa, Ontario, Canada.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4925-8. doi: 10.1109/IEMBS.2011.6091221.
The quality of automated real-time critical care monitoring is impacted by the degree of signal artifact present in clinical data. This is further complicated when different clinical rules applied for disease detection require source data at different frequencies and different signal quality. This paper proposes a novel multidimensional framework based on service oriented architecture to support real-time implementation of clinical artifact detection in critical care settings. The framework is instantiated through a Neonatal Intensive Care case study which assesses signal quality of physiological data streams prior to detection of late-onset neonatal sepsis. In this case study requirements and provisions of artifact and clinical event detection are determined for real-time clinical implementation, which forms the second important contribution of this paper.
临床数据中存在的信号伪影程度会影响自动实时重症监护监测的质量。当应用于疾病检测的不同临床规则需要不同频率和不同信号质量的源数据时,情况会变得更加复杂。本文提出了一种基于面向服务架构的新型多维框架,以支持重症监护环境中临床伪影检测的实时实施。该框架通过一个新生儿重症监护案例研究来实例化,该研究在检测晚发性新生儿败血症之前评估生理数据流的信号质量。在这个案例研究中,确定了伪影和临床事件检测的实时临床实施要求和规定,这构成了本文的第二个重要贡献。