Suppr超能文献

重症监护中用于自适应监测的实时患者特异性学习。

Patient-specific learning in real time for adaptive monitoring in critical care.

作者信息

Zhang Ying, Szolovits Peter

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

J Biomed Inform. 2008 Jun;41(3):452-60. doi: 10.1016/j.jbi.2008.03.011. Epub 2008 Mar 28.

Abstract

Intensive care monitoring systems are typically developed from population data, but do not take into account the variability among individual patients' characteristics. This study develops patient-specific alarm algorithms in real time. Classification tree and neural network learning were carried out in batch mode on individual patients' vital sign numerics in successive intervals of incremental duration to generate binary classifiers of patient state and thus to determine when to issue an alarm. Results suggest that the performance of these classifiers follows the course of a learning curve. After 8h of patient-specific training during each of 10 monitoring sessions, our neural networks reached average sensitivity, specificity, positive predictive value, and accuracy of 0.96, 0.99, 0.79, and 0.99, respectively. The classification trees achieved 0.84, 0.98, 0.72, and 0.98, respectively. Thus, patient-specific modeling in real time is not only feasible but also effective in generating alerts at the bedside.

摘要

重症监护监测系统通常是根据总体数据开发的,但没有考虑到个体患者特征之间的差异。本研究实时开发针对特定患者的警报算法。在持续时间递增的连续间隔内,对个体患者的生命体征数值以批处理模式进行分类树和神经网络学习,以生成患者状态的二元分类器,从而确定何时发出警报。结果表明,这些分类器的性能遵循学习曲线的过程。在10次监测会话中的每次会话进行8小时的针对特定患者的训练后,我们的神经网络分别达到了0.96、0.99、0.79和0.99的平均灵敏度、特异性、阳性预测值和准确率。分类树分别达到了0.84、0.98、0.72和0.98。因此,实时针对特定患者的建模不仅可行,而且在床边生成警报方面是有效的。

相似文献

7
Diagnosis of urinary tract infection based on artificial intelligence methods.基于人工智能方法的尿路感染诊断。
Comput Methods Programs Biomed. 2018 Nov;166:51-59. doi: 10.1016/j.cmpb.2018.10.007. Epub 2018 Oct 2.

引用本文的文献

1
Assessment of Patient Matters in Healthcare Facilities.医疗机构中患者事务的评估
Healthcare (Basel). 2024 Jan 26;12(3):325. doi: 10.3390/healthcare12030325.

本文引用的文献

2
Should we be alarmed by our alarms?我们应该为自己的警报感到惊慌吗?
Curr Opin Anaesthesiol. 2007 Dec;20(6):590-4. doi: 10.1097/ACO.0b013e3282f10dff.
3
Alarm algorithms in critical care monitoring.重症监护监测中的警报算法
Anesth Analg. 2006 May;102(5):1525-37. doi: 10.1213/01.ane.0000204385.01983.61.
4
Ten commandments for implementing clinical information systems.实施临床信息系统的十条戒律。
Proc (Bayl Univ Med Cent). 2004 Jul;17(3):265-9. doi: 10.1080/08998280.2004.11927979.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验