Suppr超能文献

利用后照式晶状体图像的纹理和强度分析自动检测皮质性和后囊下白内障。

Automatic detection of cortical and PSC cataracts using texture and intensity analysis on retro-illumination lens images.

作者信息

Chow Yew Chung, Gao Xinting, Li Huiqi, Lim Joo Hwee, Sun Ying, Wong Tien Yin

机构信息

National University of Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5044-7. doi: 10.1109/IEMBS.2011.6091249.

Abstract

Cataract remains a leading cause for blindness worldwide. Cataract diagnosis via human grading is subjective and time-consuming. Several methods of automatic grading are currently available, but each of them suffers from some drawbacks. In this paper, a new approach for automatic detection based on texture and intensity analysis is proposed to address the problems of existing methods and improve the performance from three aspects, namely ROI detection, lens mask generation and opacity detection. In the detection method, image clipping and texture analysis are applied to overcome the over-detection problem for clear lens images and global thresholding is exploited to solve the under-detection problem for severe cataract images. The proposed method is tested on 725 retro-illumination lens images randomly selected from a database of a community study. Experiments show improved performance compared with the state-of-the-art method.

摘要

白内障仍然是全球失明的主要原因。通过人工分级进行白内障诊断具有主观性且耗时。目前有几种自动分级方法,但每种方法都存在一些缺点。本文提出了一种基于纹理和强度分析的自动检测新方法,以解决现有方法的问题,并从感兴趣区域(ROI)检测、晶状体掩码生成和混浊度检测三个方面提高性能。在检测方法中,应用图像裁剪和纹理分析来克服清晰晶状体图像的过度检测问题,并利用全局阈值处理来解决严重白内障图像的检测不足问题。该方法在从一项社区研究数据库中随机选取的725张后照式晶状体图像上进行了测试。实验表明,与现有最先进方法相比,该方法性能有所提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验