Ghosh Subarna, Alomari Raja' S, Chaudhary Vipin, Dhillon Gurmeet
Department of Computer Science and Engineering, State University of New York at Buffalo, NY 14260, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5068-71. doi: 10.1109/IEMBS.2011.6091255.
Lower back pain is widely prevalent in the world today, and the situation is aggravated due to a shortage of radiologists. Intervertebral disc disorders like desiccation, degeneration and herniation are some of the major causes of lower back pain. In this paper, we propose a robust computer-aided herniation diagnosis system for lumbar MRI by first extracting an approximate Region Of Interest (ROI) for each disc and then using a combination of viable features to produce a highly accurate classifier. We describe the extraction of raw, LBP (Local Binary Patterns), Gabor, GLCM (Gray-Level Co-occurrence Matrix), shape, and intensity features from lumbar SPIR T2-weighted MRI and also present a thorough performance comparison of individual and combined features. We perform 5-fold cross validation experiments on 35 cases and report a very high accuracy of 98.29% using a combination of features. Also, combining the desired features and reducing the dimensionality using LDA, we achieve a high sensitivity (true positive rate) of 98.11%.
下背痛在当今世界广泛存在,并且由于放射科医生短缺,情况更加严重。椎间盘退变、脱水和突出等疾病是下背痛的一些主要原因。在本文中,我们提出了一种用于腰椎MRI的强大的计算机辅助椎间盘突出诊断系统,该系统首先为每个椎间盘提取近似感兴趣区域(ROI),然后使用多种可行特征的组合来生成高度准确的分类器。我们描述了从腰椎SPIR T2加权MRI中提取原始、局部二值模式(LBP)、Gabor、灰度共生矩阵(GLCM)、形状和强度特征的方法,并对单个特征和组合特征进行了全面的性能比较。我们对35例病例进行了5折交叉验证实验,使用特征组合报告了98.29%的非常高的准确率。此外,结合所需特征并使用线性判别分析(LDA)降低维度,我们实现了98.11%的高灵敏度(真阳性率)。