Orhan Umut, Erdogmus Deniz, Roark Brian, Purwar Shalini, Hild Kenneth E, Oken Barry, Nezamfar Hooman, Fried-Oken Melanie
Cognitive Systems Laboratory, Northeastern University, Boston, MA, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5774-7. doi: 10.1109/IEMBS.2011.6091429.
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-typewriter depending only on EEG responses will not be sufficiently accurate for single-trial operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the cost of speed. Hence incorporation of a language model based prior or additional evidence is vital to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The letter classification accuracies are rigorously evaluated for varying language model orders as well as number of ERP-inducing trials. The results demonstrate that the language models contribute significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by a 4-gram language model may achieve the same performance using 3-trial ERP classification for the initial letters of the words and using single trial ERP classification for the subsequent ones. Overall, fusion of evidence from EEG and language models yields a significant opportunity to increase the word rate of a BCI based typing system.
脑电图(EEG)中与刺激相对应的事件相关电位(ERP)可用于检测脑机接口(BCI)中人员的意图。这种范式被广泛用于构建基于BCI的逐字母文本输入系统。然而,一般来说,仅依赖EEG响应的BCI打字机在单次试验操作中准确性不够高,现有系统采用多次试验方案来提高准确性,但以速度为代价。因此,纳入基于语言模型的先验信息或额外证据对于提高准确性和速度至关重要。在本文中,我们研究了将n元语法语言模型与基于正则化判别分析的ERP检测器进行贝叶斯融合对基于EEG的BCI的影响。针对不同的语言模型阶数以及ERP诱发试验次数,严格评估了字母分类准确率。结果表明,语言模型对字母分类准确率有显著贡献。具体而言,我们发现,由4元语法语言模型支持的BCI拼写器,对于单词的首字母使用3次试验的ERP分类,对于后续字母使用单次试验的ERP分类,可能会达到相同的性能。总体而言,融合EEG和语言模型的证据为提高基于BCI的打字系统的单词输入速度提供了重要契机。