Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 609-735, Korea.
National Center for Optically-Assisted Ultrahigh-precision Mechanical Systems, Yonsei University, Seoul 03722, Korea.
Sensors (Basel). 2020 Feb 7;20(3):891. doi: 10.3390/s20030891.
Steady-state visual evoked potentials (SSVEPs) have been extensively utilized to develop brain-computer interfaces (BCIs) due to the advantages of robustness, large number of commands, high classification accuracies, and information transfer rates (ITRs). However, the use of several simultaneous flickering stimuli often causes high levels of user discomfort, tiredness, annoyingness, and fatigue. Here we propose to design a stimuli-responsive hybrid speller by using electroencephalography (EEG) and video-based eye-tracking to increase user comfortability levels when presented with large numbers of simultaneously flickering stimuli. Interestingly, a canonical correlation analysis (CCA)-based framework was useful to identify target frequency with a 1 s duration of flickering signal. Our proposed BCI-speller uses only six frequencies to classify forty-eight targets, thus achieve greatly increased ITR, whereas basic SSVEP BCI-spellers use an equal number of frequencies to the number of targets. Using this speller, we obtained an average classification accuracy of 90.35 ± 3.597% with an average ITR of 184.06 ± 12.761 bits per minute in a cued-spelling task and an ITR of 190.73 ± 17.849 bits per minute in a free-spelling task. Consequently, our proposed speller is superior to the other spellers in terms of targets classified, classification accuracy, and ITR, while producing less fatigue, annoyingness, tiredness and discomfort. Together, our proposed hybrid eye tracking and SSVEP BCI-based system will ultimately enable a truly high-speed communication channel.
稳态视觉诱发电位(SSVEPs)因其稳健性、大量命令、高分类准确率和信息传输率(ITR)而被广泛应用于脑机接口(BCI)的开发。然而,使用多个同时闪烁的刺激通常会导致用户高度不适、疲劳、厌烦和疲劳。在这里,我们提出通过使用脑电图(EEG)和基于视频的眼动追踪来设计一种刺激响应混合拼字游戏,以提高在呈现大量同时闪烁刺激时的用户舒适度水平。有趣的是,基于典型相关分析(CCA)的框架可用于识别具有 1 秒闪烁信号持续时间的目标频率。我们提出的 BCI 拼字游戏仅使用六个频率即可对四十八个目标进行分类,从而大大提高了 ITR,而基本的 SSVEP BCI 拼字游戏则使用与目标数量相等的频率。使用这个拼字游戏,我们在提示拼写任务中获得了 90.35 ± 3.597%的平均分类准确率和 184.06 ± 12.761 位/分钟的平均 ITR,在自由拼写任务中获得了 190.73 ± 17.849 位/分钟的 ITR。因此,与其他拼字游戏相比,我们提出的拼字游戏在分类目标、分类准确率和 ITR 方面具有优势,同时产生的疲劳、厌烦、疲劳和不适较少。总之,我们提出的基于混合眼动追踪和 SSVEP 的系统最终将实现真正的高速通信通道。