Suppr超能文献

训练以改善临床瘫痪肌肉中的随意肌肉活动,用于神经假体控制。

Training to improve volitional muscle activity in clinically paralyzed muscles for neuroprosthesis control.

作者信息

Moss Christa W, Kilgore Kevin L, Peckham P Hunter

机构信息

Department of Biomedical Engineering, Case Western Reserve University and the Louis Stokes VA Medical Center, Cleveland, OH 44106, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5794-7. doi: 10.1109/IEMBS.2011.6091434.

Abstract

Neuroprostheses are devices that use electrical stimulation to activate paralyzed muscles in a coordinated manner to restore functional movements. These systems utilize a voluntarily-generated command signal for control of function. Current command signals include electromyographic (EMG) activity from muscles above the injury level that remain under volitional control. In individuals with cervical level spinal cord injury (SCI), these signal sources are limited in number. Our recent research suggests that volitional muscle activity from below the injury level in individuals with motor complete spinal cord injury may be a viable source of command information. The signals from these muscles are small, and therefore the goal of this study is to determine if training using visual feedback can improve the quality of these muscle signals. Results to date indicate that training with visual feedback can increase both the magnitude and consistency of EMG signals in clinically paralyzed muscles.

摘要

神经假体是一种利用电刺激以协调方式激活麻痹肌肉以恢复功能运动的装置。这些系统利用自主产生的命令信号来控制功能。当前的命令信号包括来自损伤水平以上仍受意志控制的肌肉的肌电图(EMG)活动。在颈段脊髓损伤(SCI)患者中,这些信号源数量有限。我们最近的研究表明,运动完全性脊髓损伤患者损伤水平以下的自主肌肉活动可能是一种可行的命令信息来源。来自这些肌肉的信号很小,因此本研究的目的是确定使用视觉反馈进行训练是否可以提高这些肌肉信号的质量。迄今为止的结果表明,使用视觉反馈进行训练可以增加临床麻痹肌肉中EMG信号的幅度和一致性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验