Suppr超能文献

用于音乐诱发情感识别的与主体无关特征集的泛化。

Generalizations of the subject-independent feature set for music-induced emotion recognition.

作者信息

Lin Yuan-Pin, Chen Jyh-Horng, Duann Jeng-Ren, Lin Chin-Teng, Jung Tzyy-Ping

机构信息

Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6092-5. doi: 10.1109/IEMBS.2011.6091505.

Abstract

Electroencephalogram (EEG)-based emotion recognition has been an intensely growing field. Yet, how to achieve acceptable accuracy on a practical system with as fewer electrodes as possible is less concerned. This study evaluates a set of subject-independent features, based on differential power asymmetry of symmetric electrode pairs [1], with emphasis on its applicability to subject variability in music-induced emotion classification problem. Results of this study have evidently validated the feasibility of using subject-independent EEG features to classify four emotional states with acceptable accuracy in second-scale temporal resolution. These features could be generalized across subjects to detect emotion induced by music excerpts not limited to the music database that was used to derive the emotion-specific features.

摘要

基于脑电图(EEG)的情绪识别一直是一个快速发展的领域。然而,如何在一个尽可能少用电极的实际系统上实现可接受的准确率却较少受到关注。本研究基于对称电极对的差分功率不对称性评估了一组与个体无关的特征[1],重点关注其在音乐诱发情绪分类问题中对个体差异的适用性。本研究结果明显验证了使用与个体无关的EEG特征以秒级时间分辨率在可接受的准确率下对四种情绪状态进行分类的可行性。这些特征可以推广到不同个体,以检测不限于用于导出特定情绪特征的音乐数据库中的音乐片段所诱发的情绪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验