Lin Yuan-Pin, Jung Tzyy-Ping, Chen Jyh-Horng
Department of Electrical Engineering, National Taiwan University, Taiwan.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5316-9. doi: 10.1109/IEMBS.2009.5333524.
This study explores the electroencephalographic (EEG) correlates of emotions during music listening. Principal component analysis (PCA) is used to correlate EEG features with complex music appreciation. This study also applies machine-leaning algorithms to demonstrate the feasibility of classifying EEG dynamics in four subjectively-reported emotional states. The high classification accuracy (81.58+/-3.74%) demonstrates the feasibility of using EEG features to assess emotional states of human subjects. Further, the spatial and spectral patterns of the EEG most relevant to emotions seem reproducible across subjects.
本研究探讨了音乐聆听过程中情绪的脑电图(EEG)相关性。主成分分析(PCA)用于将EEG特征与复杂的音乐欣赏相关联。本研究还应用机器学习算法来证明在四种主观报告的情绪状态下对EEG动态进行分类的可行性。高分类准确率(81.58±3.74%)证明了使用EEG特征评估人类受试者情绪状态的可行性。此外,与情绪最相关的EEG的空间和频谱模式似乎在不同受试者之间是可重复的。